IV Международный конкурс
научно-исследовательских и творческих работ учащихся
«СТАРТ В НАУКЕ»
 
     

ТЕМА РАБОТЫ: ФИЗИКА ПЛАЗМЫ
Котченко А.В., Кириллова А.С.
Текст научной работы размещён без изображений и формул.
Полная версия научной работы доступна в формате PDF


Введение:

Многие философы античности утверждали, что мир состоит из четырёх стихий: земли, воды, воздуха и огня. Это положение с учётом некоторых допущений укладывается в современное научное представление о четырёх агрегатных состояниях вещества, причем плазме, очевидно, соответствует огонь.

В школьных базовых учебниках физики достаточно подробно изучается 3 агрегатных состояния: твердое, жидкое и газообразное. Плазма изучается обзорно, несмотря на то что 95% всей Вселенной состоит из плазмы и она обладает очень интересными свойствами, которые находят всё более широкое применение в разработках, посвящённых большим проблемам современной техники.

Мы решили устранить этот «пробел» школьной программе и расширить свои знания в данной области . Очень надеемся, что данное исследования будет интересно нашим одноклассникам и друзьям.

 

1

 

Что такое плазма?

Словом «плазма» (от греч. «плазма» — «оформленное») в середине XIX в. стали именовать бесцветную часть крови (без красных и белых телец) и жидкость, наполняющую живые клетки. В 1929 г. американские физики Ирвинг Лёнгмюр (1881—1957) и Леви Тонко (1897—1971) назвали плазмой ионизованный газ в газоразрядной трубке.

Английский физик Уильям Крукс (1832—1919), изучавший электрический разряд в трубках с разрежённым воздухом, писал: «Явления в откачанных трубках открывают для физической науки новый мир, в котором материя может существовать в четвёртом состоянии».

2

2

 

В зависимости от температуры любое вещество изменяет своё состояние. Так, вода при отрицательных (по Цельсию) температурах находится в твёрдом состоянии, в интервале от 0 до 100 "С - в жидком, выше 100 °С—в газообразном. Если температура продолжает расти, атомы и молекулы начинают терять свои электроны — ионизуются и газ превращается в плазму. При температурах более 1000000 °С плазма абсолютно ионизована — она состоит только из электронов и положительных ионов. Плазма — наиболее распространённое состояние вещества в природе, на неё приходится около 99 % массы Вселенной. Солнце, большинство звёзд, туманности — это полностью ионизованная плазма. . И лишь ничтожную часть Вселенной составляет вещество в твёрдом состоянии — планеты, астероиды и пылевые туманности.

Внешняя часть земной атмосферы (ионосфера) тоже плазма.

Ещё выше располагаются радиационные пояса, содержащие плазму.

Полярные сияния, молнии, в том числе шаровые, — всё это различные виды плазмы, наблюдать которые можно в естественных условиях на Земле

Под плазмой в физике понимают газ, состоящий из электрически заряженных и нейтральных частиц, в котором суммарный электрический заряд равен нулю, т. с. выполнено условие квазинейтральности (поэтому, например, пучок электронов, летящих в вакууме, не плазма: он несет отрицательный заряд).

Наиболее типичные формы плазмы

3

 

Искусственно созданная плазма

Плазменная панель (телевизор, монитор)

Вещество внутри люминесцентных (в т. ч. компактных) и неоновых ламп

Плазменные ракетные двигатели

Газоразрядная корона озонового генератора

управляемого термоядерного синтеза

Электрическая дуга дуговой лампы и в дуговой сварке

Плазменная лампа

Дуговой разрядтрансформатора Теслы

Воздействие на вещество лазерным излучением

Светящаяся сфера ядерного взрыва

Земная природная плазма

Молния

Огни святого Эльма

Ионосфера

Языки пламени (низкотемпературная плазма)

Полярное сияние

Космическая-астрофизическая плазма

Солнце и другие звезды (те, которые существуют за счет термоядерных реакций)

Солнечный ветер

Космическое пространство (пространство между планетами, звездами, галактиками)

Межзвёздные туманности

Выделяются три наиболее типичные формы плазмы.

Фазовым состоянием большей части вещества во Вселенной является плазма. Все звёзды состоят из плазмы, и даже пространство между ними заполнено плазмой, хотя и очень разреженной. К примеру, планета Юпитер сосредоточила в себе практически все вещество Солнечной системы, находящееся в «не плазменном» состоянии (жидком, твердом и газообразном). При этом масса Юпитера составляет всего лишь около 0,1 % массы Солнечной системы, а объем и того меньше — всего 10−15 %. При этом мельчайшие частицы пыли, заполняющие космическое пространство и несущие на себе определенный электрический заряд, в совокупности могут быть рассмотрены как плазма, состоящая из сверхтяжелых заряженных ионов.

Классификация

Плазма обычно разделяется на идеальную и неидеальную, низкотемпературную ивысокотемпературную, равновесную и неравновесную, при этом довольно часто холодная плазма бывает неравновесной, а горячая равновесной.

Классификация

В неравновесной плазме электронная температура существенно превышает температуру ионов. Это происходит из-за различия в массах иона и электрона, которое затрудняет процесс обмена энергией. Такая ситуация встречается в газовых разрядах, когда ионы имеют температуру около сотен, а электроны около десятков тысяч K.

 

Температура

Для описания плазмы в физике удобно измерять температуру в единицах измерения характерной энергии в электрон-вольтах (эВ). Для перевода температуры в эВ можно воспользоваться следующим соотношением: 1 эВ = 11600 K (Кельвин).

В равновесной плазме обе температуры равны. Поскольку для осуществления процесса ионизации необходимы температуры, сравнимые с потенциалом ионизации, равновесная плазма обычно является горячей (с температурой больше нескольких тысяч K).

 

 

4

5

 

Достаточная плотность

Заряженные частицы должны находиться достаточно близко друг к другу, чтобы каждая из них взаимодействовала с целой системой близкорасположенных заряженных частиц. Условие считается выполненным, если число заряженных частиц в сфере влияния достаточно для возникновения коллективных эффектов

 

(Плотность в физике плазмы

описывается безразмерным

параметром плазмы rs, который

определяется как К отношение

среднего межчастичного

остояния к радиусу бора.)

 

В случае если в плазму внесено какое-либо тело, его потенциал вобщем случае будет меньше потенциала плазмы . Такой потенциал называют плавающим потенциалом. По причине хорошей электрической проводимости плазма стремится экранировать все электрические поля. Это приводит к явлению квазинейтральности — плотностьотрицательных зарядов с хорошей точностью равна плотности положительных зарядов

 

Квазинейтральность

(Примером неквазинейтральной

плазмы является пучок электронов.

Однако плотность нейтральных

плазм должна быть очень мала,

иначе они быстро распадутся

за счёт кулоновского

отталкивания.)

 

5

5

 

Использование плазмы.

Наиболее широко плазма применяется в светотехнике - в газоразрядных лампах, освещающих улицы. Гуляя что в них светится неоновая или аргоновая плазма. Пользуемся лампами дневного света. Всякий, кто имел «удовольствие» устроить в электрической сети короткое замыкание, встречался с плазмой. Искра, которая проскакивает между проводами, состоит из плазмы электрического разряда в воздухе. Дуга электрической сварки тоже плазма. Любое вещество, нагретое до достаточно высокой температуры, переходит в состояние плазмы. Легче всего это происходит с парами щелочных металлов, таких, как натрий, калий, цезий. Обычное пламя обладает некоторой теплопроводностью; оно, хотя и в слабой степени, ионизировано, то есть является плазмой. Причина этой проводимости - ничтожная примесь натрия, который можно распознать по желтому свечению. Для полной ионизации газа нужна температура в десятки тысяч градусов. Кроме того, плазма применяется в самых разных газоразрядных приборах: выпрямителях электрического тока, стабилизаторах напряжения, плазменных усилителях и генераторах называемые газовые лазеры (гелий-неоновый, криптоновый, на диоксиде углерода и т. п.) на самом деле плазменные: газовые смеси в них ионизованы электрическим разрядом. Свойствами, характерными для плазмы, обладают электроны проводимости в металле (ионы, жестко закрепленные в кристаллической решётке, нейтрализуют их заряды), совокупность свободных электронов и подвижных «дырок» (вакансий) в полупроводниках. Поэтому такие системы называют плазмой твёрдых тел. Газовую плазму принято разделять на низкотемпературную - до 100 тыс. градусов и высокотемпературную - до 100 млн градусов. Существуют генераторы низкотемпературной плазмы - плазмотроны, в которых используется электрическая дуга. С помощью плазмотрона можно нагреть почти любой газ до 7000-10000 градусов за сотые и тысячные доли секунды. С созданием плазмотрона возникла новая область науки - плазменная химия: многие химические реакции ускоряются или идут только в плазменной струе. Плазмотроны применяются и в горно-рудной промышленности, и для резки металлов. Созданы также плазменные двигатели, магнитогидродинамические электростанции. Разрабатываются различные схемы плазменного ускорения заряженных частиц. Центральной задачей физики плазмы является проблема управляемого термоядерного синтеза. Термоядерными называют реакции синтеза более тяжёлых ядер из ядер лёгких элементов (в первую очередь изотопов водорода - дейтерия D и трития Т), протекающие при очень высоких температурах. В естественных условиях термоядерные реакции происходят на Солнце: ядра водорода соединяются друг с другом, образуя ядра гелия, при этом выделяется значительное количество энергии. Искусственная реакция термоядерного синтеза была осуществлена в водородной бомбе.

6

 

 

7

 

Заключение

Плазма – ещё малоизученный объект не только в физике, но и в химии (плазмохимии), астрономии и многих других науках. Поэтому важнейшие технические положения физики плазмы до сих пор не вышли из стадии лабораторной разработки. В настоящее время плазма активно изучается т.к. имеет огромное значение для науки и техники. Эта тема интересна ещё и тем, что плазма – четвёртое состояние вещества, о существовании которого люди не подозревали до XX века.

 

8

 

Список литературы

https://ru.wikipedia.org/wiki/Плазма

http://fizolimpiada.ru/referat-po-fizike14.html

http://fb.ru/article/238673/fizika-plazmyi-osnovyi-fiziki-plazmyi

http://encyclopaedia.biga.ru/enc/science_and_technology/plazma.html

http://worldofschool.ru/fizika/plazmy/plazma/plazma-i-eyo-primenenie-kratko