Развитие мореходства и географические открытия, сделанные в дальних походах, развитие торговли, потребовало уже достаточно точных карт больших территорий, что было невозможно без проведения определенных измерений на местности. Так родилась и стала интенсивно развиваться наука об измерении Земли – геодезия. Наряду с этим накопление астрономических знаний, наблюдения небесных тел и осознание, что Земля – одна из планет Солнечной системы, поставили крайне важный для науки вопрос об определении формы и размеров Земли и изучении ее гравитационного поля, оказывающего сильное влияние на формирование фигуры нашей планеты.
Геодезию еще с прошлого века подразделяют на две части: "элементарную" геодезию (ее сейчас называют просто "геодезией"), имеющую дело с небольшими участками местности, которые можно считать плоскими, и высшую геодезию, изучающую Землю в целом или на достаточно больших территориях, где кривизна ее поверхности играет существенную роль.
Современная геодезия решает множество задач. Прежде всего, создание карт больших и малых территорий (географических и топографических). Но не только: геодезия совместно с астрономией, гравиметрией (наукой об измерении ускорения силы тяжести), геофизикой, геодинамикой и другими науками о Земле позволяет определять геометрические и геофизические параметры планеты, находить вариации скорости ее вращения, учитывать движение полюсов, изучать деформации земной коры. В отдельные дисциплины выделились морская геодезия, прикладная геодезия, космическая (спутниковая) геодезия. Но при всем разнообразии решаемых задач и областей применения собственно геодезические измерения сводятся к определению всего трех геометрических величин: расстояний, углов и превышений (разностей высот точек). Эти величины могут быть полезны и сами по себе, особенно в прикладной геодезии (на стройплощадках, при разметке местности), но, главное, они позволяют вычислить координаты определяемых точек. Координаты, они нужны и морякам, и авиаторам, и военным, и участникам экспедиций, и строителям.
Существует довольно много различных систем координат. На плоскости используют известные еще из школьной математики прямолинейные прямоугольные (декартовы) и полярные координаты, а также криволинейные координаты. В трехмерном случае применяют различные системы пространственных координат, геоцентрическую (с началом в центре масс Земли) прямоугольную систему координат, наиболее перспективную сейчас в геодезии.
Измерения производятся на физической поверхности Земли, которую невозможно описать никакими математическими формулами. Поэтому все измерения приводят на некую поверхность "правильной" формы, которая может быть описана уравнениями математики и в среднем достаточно хорошо соответствует фигуре Земли. Такой поверхностью служит поверхность эллипсоида или, в более грубом приближении, – шара. На этих поверхностях применяются криволинейные координаты, известные всем широта и долгота. Но любая карта – поверхность плоская, и возникает задача изображения криволинейной поверхности на плоскости. При этом неизбежны искажения, так как сферическую поверхность нельзя развернуть на плоскость без разрывов и складок. Этой проблемой занимается математическая картография, в которой разработано множество проекций – способов переноса изображений на плоскость с минимальными искажениями. Очень часто применяются цилиндрические проекции, при которых земной шар вписывается в цилиндр, касающийся шара по экватору. Сетка географических координат (меридианов и параллелей) проектируется на поверхность цилиндра в виде взаимно перпендикулярных прямых линий, а цилиндр разрезается по вертикали и разворачивается в плоскость. Одна из таких проекций – конформная (равноугольная) проекция Меркатора – часто применяется как для навигационных, так и для мировых карт, физических и политических. Для крупномасштабных топографических карт в нашей стране используют, как правило, так называемую проекцию Гаусса-Крюгера, относящуюся также к группе цилиндрических проекций.
Координаты можно получить на карте в виде плоских прямоугольных координат Х, У (третью координату указывают в виде высоты Н над некоторой "исходной" поверхностью, например над уровнем моря). Но для этого необходимо провести целый комплекс измерений расстояний, углов и высот.
Угловые измерения производят при помощи теодолитов – оптико-механических приборов, основной частью которых служит зрительная труба, снабженная горизонтальным и вертикальным угломерными кругами с отсчетными приспособлениями.
Для определения превышений служат нивелиры, представляющие собой зрительную трубу с точным пузырьковым уровнем, позволяющим приводить визирную ось трубы в строго горизонтальное положение. Выполнив такое приведение, наблюдатель берет отсчеты по двум вертикальным рейкам с делениями, установленным на точках, разность высот которых надо определить. Это так называемое геометрическое нивелирование, наиболее точное. Существует еще тригонометрическое нивелирование, выполняемое не горизонтальным, а наклонным лучом при помощи теодолита; в этом случае определяется превышение наблюдаемой точки над точкой стояния инструмента по углу наклона и горизонтальному расстоянию, измеренному отдельным дальномером. Теодолиты, способные работать в таком режиме, получили название тахеометров (приборов для быстрой съемки).
Объединение электронного теодолита, малогабаритного фазового светодальномера и микрокомпьютера в единую конструкцию позволило создать электронный тахеометр-прибор, позволяющий выполнять как угловые, так и линейные измерения с их обработкой в полевых условиях. Их точность доходит до 0,5 угловой секунды и 2 миллиметров + 2 мм/км, а дальность действия - до 5 километров.
Внедрение лазерной техники в геодезию привело, в частности, к разработке остроумного метода нивелирования "лазерной плоскостью" (системы Laserplane). Ярко-красный луч вертикально расположенного лазера падает на вращающуюся призму, создающую развертку луча в горизонтальной плоскости. Это позволяет брать отсчет по световому пятну на рейке, поставленной в любом направлении от лазера. Такой способ не дает высокой точности, но отличается быстротой и обеспечивает работу по неограниченному числу реек, что удобно для многих работ по высотной съемке. Для точных измерений сконструирован цифровой нивелир, работающий по кодированной рейке. Код несет информацию о высоте любого места рейки относительно ее "нуля". Изображение преобразуется в электрический сигнал, и при работе по двум рейкам автоматически определяется превышение между точками их установки.
Появились глобальные спутниковые системы, кардинально изменившие ситуацию в геодезии и навигации. Они позволяют сразу же, без всяких предварительных измерений, определять координаты любых точек на поверхности Земли и находить расстояние между ними с высокой точностью.
Наиболее совершенная на сегодняшний день спутниковая геодезическая система GPS.
Подобных систем сейчас две: разработанная в США система GPS (Global Positioning System – глобальная система определения местоположения) и отечественная система ГЛОНАСС (ГЛОбальная НАвигационная Спутниковая Система). Космический комплекс представляет собой систему из двадцати четырех спутников, размещенных: в GPS - в шести орбитальных плоскостях, развернутых через 60 по долготе; в системе ГЛОНАСС - в трех плоскостях через 120 на высоте порядка 20 тысяч километров. Это позволяет постоянно наблюдать в любой точке земного шара не менее четырех спутников каждой системы. На всех спутниках имеются стандарты частоты с долговременной стабильностью порядка 10-12 - 10-13. Спутники излучают радиоволны на двух частотах (с длинами волн порядка 20 сантиметров), которые несут сложные кодированные сигналы.
Наземный комплекс системы определяет координаты спутников и передает их на борт, где они закладываются в сигнал, посылаемый на Землю, синхронизирует спутниковые "часы" и сверяет их с наземной опорной шкалой времени. Для этого на центральной станции имеется водородный стандарт частоты со стабильностью 10-14, что соответствует уходу на 0,3 секунды за миллион лет.
Сигналы со спутников принимает и обрабатывает аппаратура в пункте измерения. Приемники могут работать в двух режимах, получивших название кодовых и фазовых измерений. Кодовые измерения называют также абсолютными, так как сразу определяют координаты пункта в геоцентрической системе координат. Радиоволны, излучаемые со спутника, модулируются по фазе так называемым дальномерным кодом, и такой же код вырабатывается в приемнике. Путем сравнения этих двух кодовых сигналов определяют время распространения сигнала от спутника до приемника с учетом разности показаний их часов относительно опорного времени.
Режим кодовых измерений дает точность – порядка нескольких десятков метров. Чтобы ее повысить, используют два приемника. Один устанавливают на пункте с известными координатами, определяют в нем разности измеренных и вычисленных (эталонных) величин и передают их на подвижной приемник для исправления измерений. Такой способ сводит ошибку к величине до одного метра.
Для геодезических целей применяют гораздо более точный режим фазовых измерений, при которых определяют не время распространения сигнала от спутника до приемника, а сдвиг фазы несущей частоты, излучаемой спутником. Выполняют их с двумя разнесенными приемниками и определяют разности их координат, по которым можно вычислить расстояние между приемниками с точностью до миллиметров. А если один из них поместить в точку с известными координатами, что обычно и делается, то можно легко получить и абсолютные координаты второго приемника на сантиметровом уровне точности.
К настоящему времени в разных странах разработано очень много типов GPS-приемников, различающихся по своим возможностям. Большинство геодезических задач может быть решено при использовании двух основных измерительных средств: глобальной спутниковой системы и электронного тахеометра. Добавление к ним спутниковых лазерных дальномеров, аппаратуры РСДБ и оптических интерферометров образует мощный арсенал геодезической измерительной техники ХХI века.
Литература
1. Тетерин, Г.Н. История геодезии (до XX в.). - Новосибирск: СГГА, 2008. – 300 с.
2. А. Голубев. Интерференционные тайны природы.- "Наука и жизнь" № 5, 2000 г.
3. Поклад, Г.Г. Геодезия: учеб. пособие для вузов / Г.Г. Поклад, С.П. Гриднев. - М.: Академ. Проект, 2011. – 538 с.
4. Geodetic Journey - Geodesy in the future: GGOS 2020. (Written by Bente Lilja Bye. Thursday, 26 July 2007) [Электронный ресурс]. – Режим доступа: www.ncgs.state.nc.us/mission.html.
5. А. Голубев. Интерференционные тайны природы.- "Наука и жизнь" № 5, 2000 г.
6. А. Голубев. Геотроника: жизнь древней науки.- "Наука и жизнь" № 1, 2002 г.