Флуктуирующая асимметрия листьев березы как индикатор загрязнения окружающей среды

X Международный конкурс научно-исследовательских и творческих работ учащихся
Старт в науке. Летняя площадка-2020

Флуктуирующая асимметрия листьев березы как индикатор загрязнения окружающей среды

Лизунов Е.С. 1
1МБОУ СОШ им. В.Х. Хохрякова г. Пензы
Еремкина Г.Г. 1
1МБОУ СОШ №57 им. В.Х. Хохрякова г. Пензы

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

Актуальность. Цели и задачи работы.

Вопрос о загрязнении окружающей среды в настоящее время стоит на втором месте после вакцины от коронавируса COVID-19. И это не случайно. Ведь всем хочется жить в экологически чистом районе, дышать свежим воздухом и быть здоровым. К сожалению, мы не можем до конца быть уверены, что воздух, которым мы дышим, и вода, которую мы пьем, не вредны для нашего здоровья.

На внеурочных занятиях по математике я узнал о симметрии. В качестве симметричных фигур нам показывали геометрические фигуры, цветы, бабочек и других насекомых. Мне захотелось больше узнать о симметрии. Я выяснил, что большинство растений, животных и природных явлений обладают симметрией. Это не только красиво, но и помогает живым организмам приспособиться к окружающей среде и выжить. Симметрией обладают предметы быта, произведения искусства и даже целые здания.

Загрязненные воздух, вода и почва негативно, угнетающе влияют на живую природу. Под воздействием этих факторов в растениях и животных могут происходить изменения, ведущие к отклонению от симметрии. Чем более загрязнена окружающая обстановка, тем выше угнетающий для животных и растений фактор и тем более выражены отклонения от симметрии. На этом основан метод флуктуирующей асимметрии.

Наиболее подвержены влиянию негативных факторов растения, потому что в отличие от животных они не могут перемещаться в поисках более благоприятных условий, а поэтому влияние на них этих негативных факторов постоянное. Поэтому в качестве объекта исследования я выбрал деревья, а точнее – листья березы в трех различных районах своего города.

Гипотеза: я предположил, что изучив листья березы на симметричность, смогу выяснить, загрязнена ли окружающая среда в различных районах города Пензы.

Объект исследования: экологическая обстановка в различных районах города Пензы.

Предмет исследования: симметрия листьев березы, собранных в трех разных районах Пензы.

Цель работы: с помощьюасимметриилистьев березы, собранных в трех разных районах Пензы, определить загрязнена ли окружающая среда в этих районах.

Задачи, которые мне необходимо выполнить для достижения поставленной в работе цели:

изучить понятие «симметрия» и выяснить, чем отличается осевая симметрия от центральной

изучить более подробно метод флуктуирующей асимметрии

собрать материал для изучения

провести измерения и внести данные в таблицу

проанализировать результат и сделать вывод о экологической обстановке в городе Пенза.

Считаю свою работу актуальной, так как в настоящее время многие люди хотели бы жить в экологически безопасном районе, но не всем доступно профессиональное оборудование для измерения уровня загрязнения окружающей среды.

Теоретическая часть

Симметрия. Осевая и центральная симметрии.

Симметрия как философский термин использовалась еще задолго до Пифагора и означала красоту, гармонию и порядок в каких-то предметах и явлениях окружающего мира. Древние греки даже считали симметричной Вселенную уже потому, что она прекрасная.

Более четкое представление о симметрии сформировалось только во времена Пифагора. Он говорил «то, что приводит противоположности к единству, и создаёт всё в космосе, есть симметрия». Пифагор сформулировал закон «однообразия», заключающийся в том, что если однообразно расположить равные части, то получится симметричная фигура. И именно Пифагор ввел разделение фигуры на левую и правую половинки.

Итак, симметрия — слово греческого происхождения, означающее закономерности в расположении частей, соразмерность, присутствие определённого порядка.

Рассмотрим симметрии относительно точки и прямой на плоскости.

Симметрия относительно точки называется центральной симметрией.

Точки M и   симметричны относительно некоторой точки  O, если точка O является серединой отрезка M   .


т. O называется центром симметрии.

 

Осевая симметрия — это симметрия относительно оси (прямой).

Точки M и M1 симметричны относительно некоторой прямой (оси симметрии), если эти точки лежат на прямой, перпендикулярной данной, и на одинаковом расстоянии от оси симметрии. На рисунке ось симметрии изображена розовым.

Центральной симметрией обладает колесо обозрения в ЦПКиО им В.Г.Белинского в Пензе. Если мы посмотрим на него со стороны входа на аттракцион, то четко увидим, что места для отдыхающих расположены симметрично относительно центра колеса. Фигура симметрична относительно центра симметрии, если для каждой точки этой фигуры симметричная ей точка также лежит на этой фигуре.

 

В качестве примера осевой симметрии я выбрал здание новой филармонии в нашем городе. Если мысленно провести вертикальную ось в середине этого фото, то левая половина будет симметрична правой.Фигура симметрична относительно прямой – если для каждой точки фигуры симметричная ей точка относительно прямой также принадлежит этой фигуре.

2.Метод флуктуирующей асимметрии

Даже первоклассники знают, где у нас правая рука, а где левая. Если мысленно поделить тело человека на левую и правую половинки, то можно увидеть, что внешне они практически одинаковы, за исключением, может быть, родинок. Правая половина тела, как в зеркале отражает левую и наоборот. В таком случае говорят, что правая и левая половины билатерально симметричны. А воображаемая плоскость, с помощью которой тело симметрично разделили пополам — плоскостью симметрии.

На сайте www.wikipedia.org (ВикипедиЯ) я нашел вот такое определение билатеральной симметрии:

Билатера́льная симме́трия (двусторонняя симметрия) — симметрия зеркального отражения, при которой объект имеет одну плоскость симметрии, относительно которой две его половины зеркально симметричны. Если на плоскость симметрии опустить перпендикуляр из точки A и затем из точки О на плоскости симметрии продолжить его на длину AО, то он попадёт в точку A1, во всём подобную точке A. Ось симметрии у билатерально симметричных объектов отсутствует. У животных билатеральная симметрия проявляется в схожести или почти полной идентичности левой и правой половин тела. При этом всегда существуют случайные отклонения от симметрии (например, различия в папиллярных линиях, ветвлении сосудов и расположении родинок на правой и левой руках человека). Часто существуют небольшие, но закономерные различия во внешнем строении (например, более развитая мускулатура правой руки у праворуких людей) и более существенные различия между правой и левой половиной тела в расположении внутреннихорганов. Например, сердце у млекопитающих обычно размещено несимметрично, со смещением влево.

Флуктуирующей асимметрией называют небольшие случайные отклонения от двусторонней симметрии у организмов или их частей (например, у листьев березы). Эти отклоненияиспользуют в качестве показателя загрязнения окружающей среды. В дальнейшем я буду говорить о асимметрии листьев березы.

Метод флуктуирующей асимметрии заключается в нахождении относительной величины асимметрии определенной выборки листьев березы и сравнении этого показателя с табличными.

Существует несколько правил для сбора материала:

1) деревья, с которых собирается материал для изучения должны достичь вегетативного возраста (идеально если одинаковые по возрасту березы)

2) листья собираются с одной и той же части кроны

3) материал для более точного результата собирают, когда лист прекратил рост (я собирал 10 августа и 11 августа)

4)лучше использовать неповрежденный (насекомыми, фитофторой и п.т.)материал

Для измерения лист березы помещают черенком к себе. С каждого листа нужно снять показатели по пяти промерам с левой и правой сторон листа (рис. 1).

Рисунок 1. Схема морфологических признаков для оценки стабильности развития березы.

1 — Ширина левой и правой половинок листа. Для измерения лист сложить поперек. Потом разгибают лист и по образовавшейся складке измеряют.

2 — Длина жилки второго порядка, второй от основания листа.

3 — Расстояние между основаниями первой и второй жилок второго порядка.

4 — Расстояние между концами этих же жилок.

5 — Угол между главной жилкой и второй от основания листа жилкой второго порядка.

Для измерений потребуются измерительный циркуль, линейка и транспортир. Промеры 1, 4 снимаются циркулем - измерителем, угол между жилками (признак 5) измеряется транспортиром.

Для оценки величины асимметрии можно использовать пятибалльную шкалу оценки, предложенной авторами данной методики (Захаров В.М. и др., 2000). . Первый балл шкалы — норма. Такой показатель встречается в местах с «чистым» воздухом, например в деревне, в заповеднике или в тихом парке. Пятый балл — критическое значение, такие показатели отклонения от нормы встретятся, скорее всего, в мегаполисах, таких как Москва, Токио и другие.

Таблица оценки величины асимметрии

Балл

величина показателя асимметрии

1 балл

до 0,055

2 балл

0,055-0,06

3 балл

0,060-0,065

4 балл

0,065-0,07

5 балл

более 0,07

Практическая часть

Сбор биологического материала. Работа с таблицами

Для исследования я выбрал три района города Пензы – проспект Строителей (там живу я), район Часового завода (там работает папа) и Запрудный (там живут мои бабушка и дедушка).

В каждом выбранном районе я нашел по березе примерно одного возраста и собрал по 10 приблизительно одинаковых по размеру листьев из нижней части кроны.

Сбор производился 10 и 11 августа. В эти же дни я произвел замеры по пяти указанным в теоретической части признакам и занес в таблицу.

Таблица 1

Замеры листьев слева и справа от черенка

Проспект Строителей

№ листа

1. Ширина половинок листа, мм

2. Длина 2-й жилки, мм

3. Расстояние между концами 1-й и 2-й жилок, мм

4. Расстояние между концами 1-й и 2-й жилок, мм

5. Угол между центральной и 2-й жилкой, градусы

 

Л

П

Л

П

Л

П

Л

П

Л

П

1

30

31

53

49

9

6

16

16

48

42

2

32

31

50

51

5

7

15

17

56

48

3

32

29

47

50

9

11

17

13

66

51

4

32

30

49

49

8

8

16

17

43

55

5

31

28

46

47

8

8

15

14

40

46

6

32

30

49

54

6

7

16

16

54

43

7

32

31

49

56

8

10

14

17

54

46

8

34

35

54

48

8

7

15

14

40

45

9

33

28

47

44

7

6

13

15

33

36

10

27

24

50

49

7

7

13

14

50

53

Таблица 2

Замеры листьев слева и справа от черенка

Район Часового завода

№ листа

1. Ширина половинок листа, мм

2. Длина 2-й жилки, мм

3. Расстояние между концами 1-й и 2-й жилок, мм

4. Расстояние между концами 1-й и 2-й жилок, мм

5. Угол между центральной и 2-й жилкой, градусы

 

Л

П

Л

П

Л

П

Л

П

Л

П

1

17

15

24

24

9

8

9

8

60

59

2

12

12

20

20

8

8

9

9

60

60

3

15

15

25

25

6

6

8

7

57

55

4

17

20

30

33

7

7

7

1

55

65

5

17

19

28

29

7

7

10

9

60

63

6

19

17

31

28

7

8

11

9

53

55

7

20

20

31

28

7

9

10

8

55

55

8

17

18

23

25

6

7

6

8

56

61

9

18

19

31

29

8

8

11

9

57

57

10

22

19

34

30

7

9

10

12

56

60

Таблица 3

Замеры листьев слева и справа от черенка

Микрорайон Запрудный

№ листа

1. Ширина половинок листа, мм

2. Длина 2-й жилки, мм

3. Расстояние между концами 1-й и 2-й жилок, мм

4. Расстояние между концами 1-й и 2-й жилок, мм

5. Угол между центральной и 2-й жилкой, градусы

 

Л

П

Л

П

Л

П

Л

П

Л

П

1

23

22

40

39

4

5

14

15

40

40

2

16

16

32

33

5

7

11

12

36

39

3

19

19

35

35

8

7

15

18

52

41

4

17

16

28

27

5

7

12

13

42

42

5

24

23

36

37

4

6

8

9

46

51

6

25

25

37

38

3

4

9

9

48

48

7

24

21

34

34

5

4

14

15

48

40

8

25

25

36

38

6

5

11

13

49

51

9

19

18

30

30

4

4

10

13

40

42

10

17

18

29

28

8

8

11

14

45

54

Найдем относительное различие между значениями признака слева и справа для каждого признака. Для этого разность значений слева и справа разделим на их сумму. Например, для признака ширина половинок листа, мм найдем относительное различие между значениями Л и П и округлим до тысячных:

(31-30)/(31+30) 0,016

Аналогично, произведем расчеты для всех признаков всех листьев и заполним первые шесть столбцов таблиц 4,5 и 6.

Далее найдем величину асимметрии листа №1 как среднее арифметическое пяти признаков:

(0, 016+0,039+0,2+0+0,067):5 0,064

Тоже самое проделаем с листами 2, 3, 4, 5, 6, 7, 8, 9, 10.

Получив величины всех 10 листьев нашей выборки, вычислим асимметрию этой выборки- найдем среднее арифметическое всех 10 величин ассиметрии:

(0,064+0,9+0,088+0,061+0,033+0,079+0,074+0,047+0,104+0,034):10 0,067

Аналогично заполним таблицы 5 и 6.

Таблица 4

Величина асимметрии

Проспект Строителей

Номер признака

Величина асимметрии листа

№ листа

1

2

3

4

5

 

1

0,016

0,039

0,200

0

0,067

0,064

2

0,016

0,010

0,166

0,063

0,077

0,066

3

0,049

0,031

0,100

0,133

0,128

0,088

4

0,032

0

0

0,030

0,122

0,061

5

0,051

0,011

0

0,034

0,070

0,033

6

0,032

0,049

0,077

0

0,113

0,054

7

0,016

0,067

0,111

0,097

0,080

0,074

8

0,014

0,059

0,067

0,034

0,059

0,047

9

0,082

0,033

0,077

0,071

0,043

0,061

10

0,059

0,010

0

0,037

0,029

0,034

Величина асимметрии в выборке:

Х=0,058

Таблица 5

Величина асимметрии

Район Часового завода

Номер признака

Величина асимметрии листа

1

2

3

4

5

1

0,063

0

0,059

0,059

0,008

0,047

2

0

0

0

0

0

0

3

0

0

0

0,067

0,018

0,043

4

0,081

0,048

0

0,750

0,083

0,192

5

0,056

0,018

0

0,053

0,024

0,030

6

0,056

0,051

0,067

0,100

0,019

0,059

7

0

0,051

0,125

0,111

0

0,057

8

0,029

0,042

0,077

0,143

0,043

0,067

9

0,027

0,033

0

0,100

0

0,032

10

0,073

0,063

0,125

0,091

0,034

0,077

Величина асимметрии в выборке:

Х=0,060

Таблица 6

Величина асимметрии

Микрорайон Запрудный

Номер признака

Величина асимметрии листа

1

2

3

4

5

1

0,022

0,013

0,111

0,034

0

0,036

2

0

0,015

0,167

0,043

0,040

0,053

3

0

0

0,067

0,091

0,118

0,055

4

0,030

0,018

0,167

0,040

0

0,051

5

0,021

0,014

0,200

0,059

0,052

0,069

6

0

0,013

0,143

0

0

0,031

7

0,067

0

0,111

0,034

0,091

0,061

8

0

0,027

0,091

0,083

0,020

0,044

9

0,027

0

0

0,130

0,024

0,036

10

0,029

0,018

0

0,120

0,091

0,052

Величина асимметрии в выборке:

Х=0,049

Составим сводную таблицу по исследуемым районам:

Таблица 7

Сводная

Район

Величина асимметрии в выборке:

Проспект Строителей

0,058

Район Часового завода

0,060

Запрудный

0,049

V.Заключение

Сравнив таблицу оценки величины асимметрии и сводную таблицу, можно сделать вывод, что наиболее экологически благоприятный район из изучаемых – это Запрудный (величина асимметрии в выборке 0,049, что соответствует в таблице оценки асимметрии 1 баллу). Неплохая обстановка на проспекте Строителей, возле моего дома ( 0,058- 2 балла), несмотря на то, что исследуемая береза растет в непосредственной близости от дороги. А вот в районе Часового завода величина асимметрии составляет 0,060 и уже 3 балла по оценочной шкале. Это означает, что березы угнетены антропогенным фактором – загазованность воздуха или накопленные в почве вредные вещества. Возможно, это «наследие» бывшего Часового завода и других крупных предприятий заводского района. Там бы я жить не хотел. И если бы встал вопрос о покупке квартиры, то Заводской район для проживания я бы никому не советовал.

Таким образом, с помощью метода флуктуирующей асимметрии, я выяснил экологическую ситуацию в трех районах города Пензы. Работа оказалась очень интересной и актуальной. Я еще раз на практике убедился, что изучение математики необходимо. Мою работу можно использовать на уроках при изучении темы «Симметрия».

VI. Список литературы.

Cайты

www.wikipedia.org

www.studmed.ru

Литература

Толковый словарь С.И. Ожегова

Просмотров работы: 145