Удивительное вещество -вода

XV Международный конкурс научно-исследовательских и творческих работ учащихся
Старт в науке

Удивительное вещество -вода

Сабанов Р.А. 1
1МБОУ СОШ №7 им.Ю.Нестеренко г. Беслан
Алборова Д.Р. 1
1МБОУ СОШ №7 им.Ю.Нестеренко г. Беслан
Автор работы награжден дипломом победителя III степени
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

«Вода! У тебя нет ни вкуса, ни цвета, ни запаха, тебя не опишешь, тобой наслаждаешься, не понимая, что ты такое. Ты не просто необходима для жизни, ты и есть жизнь... Ты — величайшее в мире богатство...».

Антуан де Сент-Экзюпери

Как известно, что многие вещества в природе могут находиться в трех состояниях: твердом, жидком и газообразном. А также некоторые могут находиться еще и в четвертом - плазматическом состоянии. Я выбрал данную тему потому ,что многие вещества используются в жизни и в разных агрегатных состояниях.

Цель: рассмотреть существующие агрегатные состояния вещества, выявить все их достоинства и недостатки .Провести опытные исследования физических свойств воды .

Задачи:

1. Используя различные информационные источники, расширить свои теоретические знания о физических свойствах воды и ее аномалиях.

2.Провести опытную проверку изученных свойств.

3. На основе знаний физики объяснить большинство явлений и процессов, связанных с водой.

4. Представить результат в доступной привлекательной форме

1.Агрегатные состояния вещества

Взаимное расположение, характер движения и взаимодействия молекул одного и того же вещества существенно зависящие от внешних условий (температура, давление), характеризуют его агрегатное состояние. Различают четыре агрегатных состояния вещества: твердое, жидкое, газообразное, плазменное. Фазовый переход – переход системы из одного агрегатного состояния в другое. При фазовом переходе скачкообразно изменяется какая-либо физическая величина (например, плотность, внутренняя энергия) или симметрия системы. Переход веществa из твердого состояния в жидкое называется плавлением, а температуру, при которой это происходит – температурой плавления. Переход вещества из жидкого состояния в твердое называется кристаллизацией, а температуру перехода – температурой кристаллизации. Переход вещества из жидкого состояния в газообразное называется парообразованием. Переход вещества из газообразного состояния в жидкое называется конденсацией. Реализация того или иного агрегатного состояния вещества зависит от соотношения кинетической и потенциальной энергии молекул, входящих в его состав. Потенциальная энергия молекулы характеризует степень ее связи с другими частицами. Между любыми двумя молекулами вещества на расстоянии, большем диаметра молекул, действуют силы притяжения электромагнитного происхождения. Эти силы стремятся связать молекулы в единое целое. Кинетическая энергия молекул препятствует этой тенденции сцепления их между собой.

Твёрдое тело — это одно из четырёх агрегатных состояний вещества, отличающееся от других агрегатных состояний (жидкости, газов, плазмы) стабильностью формы и характеротеплового движения атомов, совершающих малые колебания около положений равновесия. Вещество находится в твердом состоянии, если средняя потенциальная энергия притяжения молекул много больше их средней кинетической энергии. Различают кристаллические и аморфные твёрдые тела. Аморфные тела – конденсированные вещества, атомная структура которых имеет ближний порядок, и не имеет дальнего порядка, характерного для кристаллических структур. Кристаллические тела – твердые тела, в которых атомы расположены закономерно, образую кристаллическую решетку. Молекулы в твердом теле располагаются упорядоченно. Упаковка молекул в пространстве аналогична заполнению плоскости правильными многоугольниками. Частицы твердого тела, образуя кристаллическую решетку, колеблются около некоторых средних положений равновесия, называемых узлами кристаллической решетки. Колебания молекул возможны по различным направлениям и могут иметь разную амплитуду. Значительная средняя потенциальная энергия взаимодействия препятствует изменению среднего расстояния между ними. Следствиями этого является сохранение твердыми телами формы и объема. В прошлом твёрдое тело применялось как конструкционный материал и в основе употребления лежали непосредственно ощутимые механические свойства как твёрдость, масса, пластичность, упругость, хрупкость. В современном мире применение твёрдого тела основывается на физических свойствах, которые зачастую обнаруживаются только при лабораторных исследованиях.

Жидкость — вещество, находящееся в жидком агрегатном состоянии, которое занимает промежуточное положение между твёрдым и газообразным состояниями. Вещество находится в жидком агрегатном состоянии, если средняя кинетическая энергия молекул соизмерима со средней потенциальной энергией их притяжения. Основным свойством жидкости, отличающим её от веществ, находящихся в других агрегатных состояниях, является способность неограниченно менять форму под действием касательных механических напряжений, даже сколь угодно малых, практически сохраняя при этом объём. При нагревании твердого тела средняя кинетическая энергия молекул, колеблющихся около положений равновесия, возрастает. Рост кинетической энергии молекул приводит к увеличению амплитуды ее колебаний. Уменьшение энергии связи при нагревании позволяет молекулам перескакивать из одного положения равновесия в другое. В результате нарушается правильное расположение частиц, характерное для кристаллической решетки твердого тела. Происходит фазовый переход вещества из твердого состояния в жидкое. Молекулы в жидкости упакованы так же плотно, как и в твердом теле, так как плотность жидкости и твердого тела примерно одинакова. При упаковке частиц в жидкости, так же как и в твердых телах, упорядоченное расположение частиц наблюдается лишь в пределах двух-трех слоев. Это означает, что при фазовом переходе происходит нарушение симметрии системы. Относительные положения молекул в жидкости не фиксированы. Под действием внешней силы жидкость течет, принимая форму сосуда и сохраняя свой объем .Текучесть жидкости объясняется тем, что перескоки молекул из одного положения равновесия в другое происходят преимущественно в направлении действия внешней силы. Вещество в жидком состоянии существует в определённом интервале температур, ниже которого переходит в твердое состояние (происходит кристаллизация либо превращение в твердотельное аморфное состояние — стекло), если температура выше — в газообразное (происходит испарение). Границы этого интервала зависят от давления. Как правило, вещество в жидком состоянии имеет только одну модификацию. Все жидкости принято делить на смеси и чистые жидкости. Некоторые смеси жидкостей имеют большое значение для жизни: кровь, морская вода и др. Жидкости могут выполнять функцию растворителей. Жидкость чрезвычайно трудно сжать механически, поскольку, в отличие от газа, между молекулами очень мало свободного пространства. Давление, производимое на жидкость, заключенную в сосуд, передаётся без изменения в каждую точку объёма этой жидкости. Эта особенность, наряду с очень малой сжимаемостью, используется в гидравлических машинах.

Газ (газообразное состояние) – одно из четырех агрегатных состояний вещества, характеризующееся очень слабыми связями между составляющими его частицами (молекулами, атомами или ионами), а также их большой подвижностью. Частицы газа почти свободно и хаотически движутся в промежутках между столкновениями, во время которых происходит резкое изменение характера их движения. Так же термин «газ» можно определить как вещество, температура которого равна или превышает критическую точку, при такой температуре сжатие газа не приводит к образованию жидкости. В этом и заключается отличие газа от пара. При повышении давления насыщенный пар частично превращается в жидкость, газ нет. Вещество находится в газообразном состоянии, если средняя кинетическая энергия молекул превышает их среднюю потенциальную энергию. Газообразное состояние вещества в условиях, когда возможно существование устойчивой жидкой или твёрдой фазы этого же вещества, обычно называется паром. Подобно жидкостям, газы обладают текучестью и сопротивляются деформации. В отличие от жидкостей, газы не имеют фиксированного объёма и не образуют свободной поверхности, а стремятся заполнить весь доступный объём (например, сосуда). Газы могут неограниченно расширяться в пространстве, так как силы притяжения между молекулами незначительны. Большая сжимаемость газов по сравнению со сжимаемостью жидкостей и твердых тел объясняется наличием большего межмолекулярного пространства.

При сжатии газа уменьшается среднее расстояние между его молекулами. Однако силы взаимного отталкивания молекул на этом расстоянии невелики и практически не препятствуют сжатию.

Плазма— частично или полностью ионизированный газ, образованный из нейтральных атомов (или молекул) и заряженных частиц (ионов и электронов). Важнейшей особенностью плазмы является то что не смотря на наличие свободных зарядов, суммарный электрический заряд плазмы приблизительно равен нулю, это означает, что объемные плотности положительных и отрицательных заряженных частиц, из которых она образована, оказываются почти одинаковыми. Плазма иногда называется четвёртым (после твёрдого, жидкого и газообразного) агрегатным состоянием вещества. Присутствие свободных электрических зарядов делает плазму проводящей средой, что обуславливает ее заметно большее взаимодействие с магнитным и электрическим полями. Плазма обычноразделяется на идеальную и неидеальную, низкотемпературную и высокотемпературную,  равновесную и неравновесную, при этом довольно часто холодная плазма бывает неравновесной, а горячая равновесной. Плазму делят на низкотемпературную (температура меньше миллиона K) и высокотемпературную (температура миллион K и выше). Такое деление обусловлено важностью высокотемпературной плазмы в проблеме осуществления управляемого термоядерного синтеза. Разные вещества переходят в состояние плазмы при разной температуре, что объясняется строением внешних электронных оболочек атомов вещества: чем легче атом отдает электрон, тем ниже температура перехода в плазменное состояние. В неравновесной плазме электронная температура существенно превышает температуру ионов. Это происходит из-за различия в массах иона и электрона, которое затрудняет процесс обмена энергией. Такая ситуация встречается в газовых разрядах, когда ионы имеют температуру около сотен, а электроны около десятков тысяч K. В равновесной плазме обе температуры равны. Поскольку для осуществления процесса ионизации необходимы температуры, сравнимые с потенциалом ионизации, равновесная плазма обычно является горячей (с температурой больше нескольких тысяч K). Степень ионизации. Для того, чтобы газ перешел в состояние плазмы, его необходимо ионизировать. Степень ионизации пропорциональна числу атомов, отдавших или поглотивших электроны, и больше всего зависит от температуры. Даже слабо ионизированный газ, в котором менее 1 % частиц находятся в ионизированном состоянии, может проявлять некоторые типичные свойства плазмы (взаимодействие с внешним электромагнитным полем и высокая электропроводность). Ионизация- процесс образования ионов из атомов. Для низкотемпературной плазмы характерна малая степень ионизации (до 1 %). Так как такие плазмы довольно часто употребляются в технологических процессах, их иногда называют технологичными плазмами Горячая плазма почти всегда полностью ионизирована (степень ионизации ~100 %). Обычно именно она понимается под «четвертым агрегатным состоянием вещества». Примером может служить Солнце. Помимо температуры, которая имеет фундаментальную важность для самого существования плазмы, вторым наиболее важным свойством плазмы является плотность. Словосочетание плотность плазмы обычно обозначает плотность электронов, то есть число свободных электронов в единице объёма.

2.Физические свойства воды и её аномалии

Чтобы как можно лучше познакомиться с таким обычным для всех веществом как вода, раскрыть сущность этого вещества, значимость её физических свойств-я решил провести несколько опытов ,связанные со свойствами воды.Мы все привыкли воспринимать воду как должное, забывая, что это уникальный элемент, без которого не было бы жизни на нашей планете. Мало кто задумывается над удивительными свойствами воды, и это, пожалуй, понятно – ведь вода повсюду окружает нас, она очень обычна на нашей планете. Ну, а обычное никогда не кажется удивительным. Однако сама обыденность необычна. Ведь никакое другое вещество не встречается на Земле в таких количествах, да еще одновременно в трех состояниях: твердом, жидком и газообразном. Каждый день мы используем воду для повседневных нужд и не задумываемся о том, как мало мы в действительности знаем о ней. Используя воду ежедневно для приготовления пищи, бытовых, сельскохозяйственных и технических целей, мы не задумываемся о ее роли в нашей жизни. Сколько тайн и загадок таит в себе такое близкое и знакомое понятие – вода? Вода обладает многими интересными свойствами, резко отличающими ее от всех других жидкостей. И если бы вода вела себя «как положено», то Земля стала бы просто неузнаваемой. Для воды, будто законы не писаны! Но, благодаря ее капризам, не могла бы родиться и развиваться жизнь.

Вода – это прозрачная жидкость без запаха, цвета, вкуса. Вода текуча. Легко меняет форму, трудно сжимается, сохраняет свой объем. Все тела при нагревании расширяются, при охлаждении сжимаются.Все, кроме воды.При температуре от 0 до + 4 °С вода при охлаждении расширяется, при нагревании сжима­ется.При+ 4 °С вода имеет наибольшую плотность, равную 1000 кг/м3. При более низкой и более высокойтемпературе плотность воды несколько меньше. Благодаря этому осенью и зимой в глубоких водоемах конвекция происходит свое­образно. Вода, охлаждаясь сверху, опускается вниз, на дно, только до тех пор, пока ее температура не снизится до +4 °С.

Благодаря этому под слоем льда, покрывающим водоем сверху, живут в воде рыбы и другие обитатели водоемов. Чтобы нагреть 1 г воды на 1 °С, ей необходимо отдать в 5, 10, 30 раз большее количество теплоты, чем 1 г любого дру­гого вещества, т. е. вода имеет очень большую удельную теп­лоемкость, равную 4200 Дж/(кг•°С). Вследствие этого вода является хорошим теплоно­сителем. Большая удельная теплоемкость воды определяет климат планеты. Вода нагревается значительно медленнее суши, забирая большое количество солнечного тепла. Полученное тепло она сохраняет дольше, чем воздух и земля, выполняя при этом терморегулирующую функцию. На этом свойстве воды основан и принцип обогрева жилых помещений при движении горячей воды по батареям отопительной системы.

Если бросить твердый кусочек свинца в жидкий свинец, и он потонет, так как он плотнее жидкого, как и подавляющее большинство других веществ. А вода? Твердая вода — лед — имеет плотность всего 900 кг/м3, поэтому льдины спокойно плы­вут по поверхности реки. Расширение воды при отвердевании вызывает разрушение горных пород. Затекая днем в трещины скал, вода ночью замерзает и отделяет куски породы.

В одном стакане находится лед при 0 °С, а в другом — та­кое же количество «ледяной» воды. Разница между ними по запасу внутренней энергии так же велика, как между водой при 0°С. и 80°С. Переход из твердого состояния в жидкое со­провождается у воды необыкновенно большим поглощением теплоты — 330 кДж/кг! Из распространенных метал­лов только алюминий превосходит воду по величине удель­ной теплоты плавления. Большое количество теплоты, кото­рое нужно отнять у воды при ее замерзании, объясняет тот факт, что во время снегопада обычно становится теплее, а во время весеннего ледохода у реки сравнительно прохладно. Вода переходит из твердого в жидкое состояние и наоборот (тает и замерзает) при одной и той же температуре 0°С.

Вода требует громадного количества теплоты для своего испарения. Вот почему там, где много воды, даже под паля­щими лучами солнца бывает не очень жарко. Испаряя неко­торое количество воды через поры кожи, организм человека имеет возможность поддерживать определенную температуру тела. Удельная теплота парообразования воды равна 2300 000 Дж/кг.Если бы удельная теплота парообразования воды была раз в десять меньше (например, как у жидкого азота или керосина), то один за другим высыхали бы мелкие водоемы, дождь испарял­ся бы зачастую еще в воздухе, а леса и луга вскоре преврати­лись бы в пустыню. Температура кипения воды +100°С, хотя и тут вода проявляет интереснейшие свойства: это правило соблюдается только при нормальном давлении ( которое составляет 760 мм рт. ст.), при понижении давления уменьшается и температура кипения воды (например, на высоте 2900 м над уровнем моря, где атмосферное давление составляет 525 мм рт. ст., точка кипения воды составляет 90°С.)

Вода – поразительная жидкость – у нее есть другая аномалия. Из всех жидкостей, кроме ртути,у воды самое большое поверхностное натяжение.

Все системы стремятся уменьшить свою энергию. Точно так же сила поверхностного натяжения стремится сократить до минимума площадь поверхности жидкости. Из всех геометрических форм шар обладает при данном объеме наименьшей поверхностью. Так что собственная форма жидкости – шар. Большое количество жидкости не может сохранить шарообразную форму: она изменяется под действием силы тяжести. Если устранить действие силы тяжести, то под действием молекулярных сил жидкость примет форму шара.

Роль поверхностного натяжения в жизни очень разнообразна. Например, существуют целые виды мелких насекомых и паукообразных, передвигающихся за счет поверхностного натяжения. Наиболее известны водомерки, которые опираются на воду кончиками лапок. Сама же лапка покрыта водоотталкивающим налетом. Поверхностный слой воды прогибается под давлением лапки, но за счет силы поверхностного натяжения водомерка остается на поверхности.В обычных сосудах вода принимает горизонтальную поверхность. Однако и здесь требуется поправка. Приглядитесь внимательнее, и вы заметите, что у краев поверхность жидкости приподнята и образует вогнутую форму. Это – тоже следствие поверхностного натяжения. Молекулы жидкости взаимодействуют между собой и с молекулами сосуда. В зависимости от того, какая из этих сил больше будет наблюдаться, явление смачивания (вогнутая поверхность) или не смачивания (выпуклая форма). Благодаря капиллярным явлениям влага поднимается, и растения имеют возможность питаться.Вода – лучший растворитель. Свойства и строение воды во многом определяют различные особенности растворов. Вода нужна для нашего организма как растворитель питательных веществ, и как переносчик их, и как среда, в которой протекают различные процессы, связанные с нашей жизнедеятельностью. Нельзя забывать, что в истории нашей планеты вода имеет исключительное значение. Пожалуй, никакое другое вещество не может сравниться с водой по своему влиянию на ход тех величайших изменений, которые претерпела Земля за многие сотни миллионов лет своего существования. Там, где есть жизнь, всегда есть вода. Жизнь без воды невозможна.

Огромное значение воды и важность проблем, связанных с ее загрязнением ни у кого не вызывает сомнений. Запасы пресной воды ограничены. Берегите себя. Берегите воду. Берегите нашу планету!

Аномалии воды — отклонения от нормальных свойств тел — до конца не выяснены и сегодня, но главная причина их известна: строение молекул воды. Атомы водорода присое­диняются к атому кислорода не симметрично с боков, а тя­готеют к одной стороне.Изучение воды продолжается.

3.Опыты

Опыт №1

Опыт №2

Опыт №3

Опыт №4

Опыт №5

Опыт №6

Опыт №7

Опыт №8

Вывод

В ходе исследования я расширил свои знания о воде. Провел собственные наблюдения.

Опытным путем доказано, что :

Вода-это жидкость, которая имеет свойства.

Вода существует в трех состояниях: твердое, жидкое, газообразное.

Свойства воды меняет свою структуру под влиянием разнообразных воздействий (мыслей, слов, музыки и т.д.)

Вода имеет свои уникальные и тонкие черты. Она бесцветна, без вкуса, без запаха, прозрачна, не имеет формы, текуча, обладает теплоемкостью и хороший растворитель. Туман, облака, роса, дождь, град, иней, снег, гололед, изморозь – все это вода в разных состояниях. Без нее не обходятся ни в одном уголке нашей планеты. Ее влияние поистине огромно. Люди должны сохранить присутствие воды в нашей жизни. Это и подводит нас к пониманию того, что вода - уникальное вещество, несущее информацию о Жизни.

Используемые источники:

1. Я.И. Перельман. Занимательная физика. Издательство АСТ. Москва. 2005

2. М.Н. Алексеева. Физика – юным. Теплота. Электричество. Книга для внеклассного чтения. 7 класс. Москва «Просвещение» 1980

3. Том Тит. Научные забавы. Интересные опыты, самоделки, развлечения. Издательский Дом Мещерякова. Москва. 2007

4. Л.А. Горев. Занимательные опыты по физике в 6-7 классах средней школы. Москва «Просвещение» 1985

5. А.В. Перышкин. Физика. 7 класс. Учебник для общеобразовательных учреждений. Москва. Дрофа. 2010

6. Использовался материал с сайта: Фестиваль «Открытый урок 2006/2007», урок-конференция «Вода, вода – кругом вода».

7. Большая книга экспериментов для школьников. Под редакцией АнтонеллыМейями; перевод с итальянского Э.И. Мотылевой. Москва. «РОСМЭН». 2006

Просмотров работы: 125