Введение
Уважаемые друзья! Ответственно вам сообщаю, есть люди, которые считают, будто дробям нет места в нашей жизни. За примерами далеко ходить не надо. Когда я училась в начальных классах, думала: «Зачем математики придумали дроби?» Наверное, только для того, чтобы портить жизнь школьникам. Другого объяснения не знала, пока не начали изучать в 5 классе тему «Дроби»
С первого знакомства с дробями было понятно, что они очень необычные числа, начиная с их непривычной записи и заканчивая сложными правилами действий с ними.
В обычной жизни, и взрослым, и детям каждый день приходится сталкиваться с проблемой деления целого на части, и даже в определенный момент кажется, что нас больше окружают не целые, а дробные числа, что является актуальностью данной темы.
Мне стало интересно узнать: как и когда появились дроби? В какой сфере жизни больше всего практически их применяют? Хотелось в ходе исследования этого вопроса убедиться и убедить других в необходимости дробей в повседневной жизни.
Объект исследования: обыкновенные дроби
Предмет исследования: использование дробей в нашей повседневной жизни.
Цель: показать, что дроби нужны не только в математике, но и в повседневной жизни.
Задачи:
Узнать, что такое дробь, какие виды дроби существуют
Изучить историю возникновения дробей.
Рассмотреть применение дробей в повседневной жизни.
Оценить достижения науки в данной области.
Понятие дроби
Дробь в математике — число, состоящее из одной или нескольких частей (долей) единицы. Дробь выражается отношением двух целых чисел m/n, где n - показывает на сколько долей разделена единица, а m – показывает сколько таких долей содержится в дроби.
В математике применяются следующие виды дробей:
обыкновенная дробь;
правильная дробь;
неправильная дробь;
смешанная дробь;
десятичная дробь.
Дроби разные нужны, дроби всякие важны
Обыкновенная дробь имеет вид n/m или m/n где m и n - натуральные числа. Делимое (m) - называют числителем дроби, делитель (n) - называют знаменателем данной дроби. Горизонтальная или косая линия в дроби обозначает деление. Черта наклонная называется - «солидус», а горизонтальная – «винкулум».
Если числитель дроби меньше знаменателя, то дробь называется правильной (например 3/7), если больше или равен - неправильной (например 7/3).
Числа, в состав которых входит целое число и правильная дробь, называются смешанными. Целое число называют целой частью смешанного числа, а правильная дробь называется дробной частью смешанного числа. Например, для смешанной дроби число 3 - целая часть, 2/5 - дробная.
Десятичная дробь, это дробь, которая записывается без знаменателя.
Выглядят они так: 5,6; 3,17; 0,17 и т.д. На самом деле это особая запись обыкновенных дробей, у которых знаменатель равен 10, 100, 1000 и т. д.
История возникновения дробей
Память человечества не сохранила для нас имя изобретателя колеса. Также невозможно назвать точно даже тот отрезок времени, когда появились дроби.
Можно предположить, что потребность делить целое на части возникала ещё в первобытном обществе. Могло быть и так…
Были у древнего человека жена и двое детей. Вот пошла однажды древняя женщина собирать плоды и нашла всего лишь 1 яблоко. Детей у неё двое, а яблоко одно. Наверное, она догадалась: взяла каменный нож да и разделила это яблоко на 2 половины.
А в это время самый - самый древний человек пошёл на охоту и убил самого - самого древнего кабана. Пришёл домой и разделил свою добычу на четыре равные части: себе, жене, сыну и дочке. Конечно, эти древние люди и не догадывались, что, разделив целое число на части, они занимались таким трудным разделом математики, который впоследствии назовут «дроби». Итак, дроби появились в тот период времени, когда в трудовой деятельности людей появилась потребность более точно измерять какие-то величины, хотя делением на части люди пользовались, наверное, с древнейших времён.
Дроби в Древнем Египте
На протяжении многих веков египтяне именовали дроби «ломаным числом», а первая дробь, с которой они познакомились, была 1/2 . За ней последовали 1/4, 1/8 , 1/16, … затем 1/3, 1/6, … т.е. самые простые дроби, называемые единичными или основными дробями.
У них числитель всегда единица. Лишь значительно позже у греков, затем у индийцев и других народов стали входить в употребление и дроби общего вида, называемые обыкновенными, у которых числитель и знаменатель могут быть любыми натуральными числами. В Древнем Египте архитектура достигла высокого развития. Чтобы строить грандиозные пирамиды и храмы, чтобы вычислять длины, площади и объемы фигур, необходимо было знать арифметику.
Из расшифрованных сведений на папирусах ученые узнали, что египтяне 4000 лет назад имели десятичную систему счисления, умели решать многие задачи, связанные с потребностями строительства, торговли и военного дела.
Одним из первых известных упоминаний о дробях является математический папирус Ринда. Три более древних текста, в которых упоминаются дроби — это Египетский математический кожаный свиток, Московский математический папирус и Деревянная табличка Ахмима. Папирус Ринда включает таблицу египетских дробей для рациональных чисел вида 1/n, а также 84 математических задачи, их решения и ответы, записанные в виде египетских дробей.
Египтяне ставили иероглиф (ер, «один из» или ре, рот) над числом для обозначения единичной дроби в обычной записи, а в священных текстах использовали линию. У них также были специальные символы для дробей 1/2, 2/3 и 3/4, которыми можно было записывать также другие дроби.
Остальные дроби они записывали в виде суммы долей. Дробь 7/8 они записывали в виде ½ ¼ 1/8, но знак «+» не указывали. А сумму 4+1/3 записывали в виде 41/3. Такая запись смешанных чисел (без знака «+») сохранилась до сих пор.
Вавилонские дроби
Жители древнего Вавилона примерно за 3000 лет до нашей эры создали систему мер аналогичную нашей метрической, только в основе её лежало не число 10, а число 60, в которой меньшая единица измерения составляла 1/60 часть высшей единицы. Полностью эта система выдерживалась у вавилонян для измерения времени и углов, и мы унаследовали от них деление часа и градуса на 60 минут, а минуты на 60 секунд.
Исследователи по-разному объясняют появление у вавилонян шестидесятеричной системы. Число 60 прекрасно делится на 2, 3, 4, 5, 6, 10, 12, 15, 20, 30 и 60, что значительно облегчает всякие расчеты. Шестидесятые доли были привычны в жизни вавилонян.
Вот почему они пользовались шестидесятеричными дробями, имеющими знаменателем всегда число 60 или его степени: 602, 603 и т.д. В этом отношении шестидесятеричные дроби можно сравнить с нашими десятичными дробями. Вавилонская математика оказала влияние на греческую математику. Следы вавилонской шестидесятеричной системы счисления удержались в современной науке при измерении времени и углов. До наших дней сохранилось деление часа на 60 мин., минуты на 60 с, окружности на 360˚, градуса на 60 мин., минуты на 60с.
Вавилоняне внесли ценный вклад в развитие астрономии. Шестидесятеричными дробями пользовались в астрономии ученые всех народов до XVII века, называя их астрономическимидробями. В отличие от них, дроби общего вида, которыми пользуемся мы, были названы обыкновенными.
Дроби в Древней Греции
Греки работали с обыкновенными дробями не часто, поэтому использовали различные обозначения. Герон и Диофант, самые известные арифметики среди древнегреческих математиков, записывали дроби в алфавитной форме, причем числитель располагали под знаменателем. Но в принципе предпочтение отдавалось либо дробям с единичным числителем, либо шестидесятеричным дробям.
Недостатки греческой системы счисления относят к их любви к строгости, которое заметно увеличило трудности, связанные с анализом отношения несоизмеримых величин. Слово «число» греки понимали, как набор единиц, поэтому то, что мы теперь рассматриваем как единое число – дробь, – греки понимали, как отношение двух целых чисел. Именно этим объясняется, почему обыкновенные дроби редко встречались в греческой арифметике.
Дроби в Древнем Китае
В Древнем Китае уже пользовались десятичной системой мер, обозначали дробь словами, используя меры длины чи: цуни, доли, порядковые, шерстинки, тончайшие, паутинки. Дробь вида 2,135436 выглядела так: 2 чи, 1 цунь, 3 доли, 5 порядковых, 4 шерстинки, 3 тончайших, 6 паутинок. Так записывались дроби на протяжении двух веков, а в V веке китайский ученый Цзу-Чун-Чжи принял за единицу не чи, а чжан = 10 чи, тогда эта дробь выглядела так: 2 чжана, 1 чи, 3 цуня, 5 долей, 4 порядковых, 3 шерстинки, 6 тончайших, 0 паутинок.
Дроби на Руси
В русском языке слово «дробь» появилось лишь в VIII веке. Происходит оно от слова «дробить, разбивать, ломать на части». В русских рукописных арифметиках XVII в. дроби называли долями, позднее «ломаными числами». В старых руководствах существуют следующие названия дробей на Руси:
1/2 - половина, полтина |
1/3 – треть |
1/4 – четь |
1/6 – полтреть |
1/8 – полчеть |
1/12 –полполтреть |
1/16 – полполчеть |
1/24 – полполполтреть (малая треть) |
1/32 – полполполчеть (малая четь) |
1/5 – пятина |
1/7 – седьмина |
1/10 - десятина |
Славянская нумерация употреблялась в России до XVI века, затем в страну начала постепенно проникать десятичная система счисления. Она окончательно вытеснила славянскую нумерацию при Петре I.
Дроби в других государствах древности
В китайской «Математике в девяти разделах» уже имеют место сокращения дробей и все действия с дробями. У индийского математика Брахмагупты найдена достаточно развитую систему дробей. У него встречаются разные дроби: и основные, и производные с любым числителем. Числитель и знаменатель записываются так же, как и у нас сейчас, но без горизонтальной черты, а просто размещаются один над другим.
Арабы первыми начали отделять чертой числитель от знаменателя.
Леонардо Пизанский уже записывает дроби, помещая в случае смешанного числа, целое число справа, но читает так, как принято у нас. В XV – XVI столетиях учение о дробях приобретает уже знакомый нам теперь вид и оформляется приблизительно в те самые разделы, которые встречаются в наших учебниках.
Следует отметить, что раздел арифметики о дробях долгое время был одним из наиболее трудных. Недаром у немцев сохранилась поговорка: «Попасть в дроби», что означало – зайти в безвыходное положение. Считалось, что тот, кто не знает дробей, не знает и арифметики.
Использование обыкновенных дробей в профессиональной деятельности человека
Живя в окружении дробей, мы не всегда их явно замечаем. И все же, мы сталкиваемся с ним очень часто: дома, на улице, в магазине, на работе и так далее. Покажу лишь малую часть того, где мы можно увидеть присутствие дробей.
В медицине. Чтобы приготовить необходимое лекарство нужно знать его состав, записанный с помощью дробей, или, когда врач назначает больному ½ таблетки.
Дроби в кулинарии. Поварам нужны дроби для соблюдения пропорции при приготовлении блюда. В рецептах очень часто используются такие фразы, например, как одна вторая стакана, четверть столовой ложки.
Дроби в музыке. Учащиеся музыкальной школы знакомятся с дробями раньше, чем в общеобразовательной школе. С первых дней занятий дети знакомятся с такими понятиями как размер и длительности нот. Древнегреческий философ Пифагор (570 г. до н. э.), один из самых первых установил связь музыки и математики. Он создал учение о звуке. Пифагор связал длительность звучания нот с дробями.
Счёт длительностей в музыке ведётся от целой ноты, которая считается до четырёх. В целой ноте 2 половинные, 4 четверти, 8 восьмых, 16 шестнадцатых. Так музыка живёт в согласии с математикой.
Дроби в географии: Материк Евразия занимает 1/3 часть суши;
Масштаб карты равен 1/50000
Участки земной поверхности изображаются на карте в уменьшенном виде, для этого используется понятие масштаба: отношение длины отрезка на карте к длине соответствующего отрезка на местности.
Например, масштаб карты 1/10000 означает, что 1см на карте соответствует 10000 см на местности.
Дроби в спорте. Когда смотрим ½ финала матча по футболу.
Дроби в пропорции человека тоже связаны с дробями. Голова маленького ребенка составляет 1/5 часть роста человека. Голова подростка – 1/6. А голова взрослого человека – 1/8 часть роста. Основываясь на этих данных, была создана кукла «Барби».
Дроби в юридической деятельности. Взрослые в жизни встречаются с такими ситуациями: в наследство каждый по завещанию получили, например А- 1/8 имущества наследодателя; Б. – 6/17; В. - завещано всё остальное . Какие доли достались каждому из наследников?
Дроби для портных. Портной при раскрое одежды использует дроби. (рукав длины три четверти - ¾ или брюки длины 7/8)
В настоящее время невозможно представить ни одну отрасль промышленности или сельского хозяйства, или строительства, где бы в расчётах не встречалось дробных чисел.
Дроби для профессии «Разметчик»
На машиностроительных заводах есть очень увлекательная профессия, называется она - разметчик. Разметчик намечает на заготовке линии, по которым эту заготовку следует обрабатывать, чтобы придать ей необходимую форму.
Разметчику приходится решать интересные и подчас нелегкие геометрические задачи, производить арифметические расчеты и т. д.
"Понадобилось как-то распределить 7 одинаковых прямоугольных пластинок равными долями между 12 деталями. Принесли эти 7 пластинок разметчику и попросили его, если можно, разметить пластинки так, чтобы не пришлось дробить ни одной из них на очень мелкие части. Значит, простейшее решение - резать каждую пластинку на 12 равных частей - не годилось, так как при этом получалось много мелких долей. Как же быть?
Возможно ли деление данных пластинок на более крупные доли? Разметчик подумал, произвел какие-то арифметические расчеты с дробями и нашел все-таки самый экономный способ деления данных пластинок.
Впоследствии он легко дробил 5 пластинок для распределения их равными долями между шестью деталями, 13 пластинок для 12 деталей, 13 пластинок для 36 деталей, 26 для 21 и т.п.
Оказывается, разметчик представил дробь 7\12 в виде суммы единичных дробей 1\3 + 1\4. Значит, если из 7 данных пластинок 4 разрезать на три равные части каждую, то получим 12 третей, то есть по одной трети для каждой детали. Остальные 3 пластинки разрежем 4 равные части каждую, получим 12 четвертей, то есть по одной четверти для каждой детали. Аналогично, используя представления дробей в виде суммы единичных дробей 5\6 = 1\2+1\3; 13\12 =1\3+3\4; 13\36 =1\4+1\9.
Практическая часть. Мои наблюдения
Дроби в часах. «Встреча».
Мы часто отвечаем на вопрос «который час?» дробями. «Без четверти пять» без пятнадцати минут пять; «Сейчас три часа без четверти» -2 час 45 минут; «Половина второго» -1 час 30 минут.
Ситуация 1. В парке стоит молодой человек с букетом цветов:
Извините. Не подскажете который час? - спрашивает у прохожего.
«Без четверти пять», - отвечает прохожий.
Что опаздывает?
Да, на целых ¾ часа.
Сочувствую.
Спасибо.
Дроби в кулинарии. «Пряники».
Поварам нужны дроби для соблюдения пропорции при приготовлении блюда. В рецептах очень часто используются такие фразы, например, как одна вторая стакана, четверть столовой ложки.
Ситуация 2. Ученик в одежде повара. Готовит тесто для пряников.
- Для пряников понадобится 1 яйцо, один с четвертью стакана муки, две с половиною столовой ложки меда, треть чайной ложки соли, половина чайной ложки имбиря. Всё тщательно перемешиваем и печем пряники.
Дроби в кулинарии. «Пирожное».
Приготовленные блюда нужно умело делить на порции.
Ситуация 3. На столе стоит тарелка. В ней 5 пирожное.
- На день рождения пришли 6 друзей. Передо мной встал вопрос: «Как поровну разделить 5 пирожное между 6 человек»?
Решение было такое: нужно 5 пирожное разделить пополам каждый. Затем ещё 2 пирожное разделить на 3 части. Получается 6 абсолютно равных частей.
Заключение
При выполнении своего проекта, я узналa много нового и интересного о дробях. Думаю, что эти знания пригодятся в учебе. Прочиталa много книг и разделов из энциклопедий. Познакомилaсь с первыми дробями, которыми оперировали люди, узналa новые для меня имена ученых, внесших свой вклад в развитие учения о дробях. А особенно то, что дроби используются почти во всех сферах деятельности человека, а это значит, что людям всех профессий нужно обязательно изучать дроби! Уметь решать задачи на дроби, знать правила сложения и вычитания, умножения и деления дробей.
Без знания математики, особенно знания дробей вся современная жизнь была бы невозможна. Например, у нас не было бы хороших домов, потому что строители должны уметь измерять, считать, сооружать. Наша одежда была бы очень грубой, так как ее нужно хорошо скроить, то есть точно все измерить, Не было бы ни какой большой промышленности, ни какой коммерции.
И конечно, не было бы радио, телевидения, кино, телефона и тысяч других вещей, составляющих часть нашей цивилизации. Использование дробей, измерения «на сколько?», «как долго?» являются жизненно необходимой частью мира, в котором мы живем.
В заключении можно сказать, что дроби бывают разные, дроби бывают важные. Знание понятия математическая дробь очень важно!
Считаю, что материалы моей работы будут интересными для других учащихся. Они могут быть использованы как на уроке, так и для проведения учителями внеклассных мероприятий по математике.
Список использованной литературы
Анищенко Е. А. Число как основное понятие математики. Мариуполь, 2002.
Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. Математика. 5 класс: учеб.для общеобразовательных учреждений/- 26-е изд., стер. – М.: Мнемозина, 2009. - 280 с.
Гейзер Г.И. История математики в школе. Пособие для учителей. – М.: Просвещение, 1981. – 239 с.
Математика. 5 класс: учеб.для общеобразоват. учреждений. [СМ. Никольский, М.К.Потапов, Н.Н.Решетников, А.В. Шевкин]. — 11-е изд, дораб. — М.: Просвещение, 2016. — 272 с. — (МГУ — школе).
Математический энциклопедический словарь. – М., 1988.