Тема работы: Пифагор и его теорема.
Цель исследования – изучить содержание теоремы Пифагора и ее доказательство в школьном учебнике, используя различные средства источников информации исследовать другие способы ее доказательства, исследовать значение теоремы Пифагора в развитии науки и техники, исследовать исторические задачи, в решении которых применяется теорема Пифагора.
Задачи исследования.
Изучение научной литературы;
Изучение других источников информации;
Изучить исторические задачи, в решении которых применяется теорема Пифагора;
Оценка полученных результатов.
Методы исследования.
Анализ научной литературы и других источников информации, оценка полученных результатов и определение важности теоремы Пифагора в развитии науки и техники.
Предметом исследования стала теорема Пифагора.
«Не делай никогда того, чего не знаешь. Но научись всему, что следует знать».
(Пифагор)
Трудно найти человека, у которого имя Пифагора не ассоциировалось бы с теоремой Пифагора. В самом деле, теорема Пифагора проста, но не очевидна. Но, кроме того, теорема Пифагора имеет огромное значение: она применяется в геометрии буквально на каждом шагу, и тот факт, что существует около 500 различных доказательств этой теоремы (геометрических, алгебраических, механических и т.п.), свидетельствует о гигантском числе ее конкретных применений.
Открытие теоремы Пифагором окружено ореолом красивых легенд. Сегодня теорема Пифагора обнаружена в различных частных задачах и чертежах: и в египетском треугольнике, в папирусе времен фараона Аменемхета первого (ок. 2000 до н.э.), и в вавилонских клинописных табличках эпохи царя Хаммурапи (XVIII в. до н.э.), и в древнеиндийском геометрическо-теологическом трактате VI - V вв. до н.э. «Сульва сутра» («Правила веревки»). В древнейшем китайском трактате «Чжоуби суань цзинь», время создания которого точно не известно, утверждается , что в XII в. до н. э. китайцы знали свойства египетского треугольника , а к VI в. до н.э. и общий вид теоремы. Несмотря на все это, имя Пифагора столь прочно сплавилось с теоремой , названной его именем .
Пожалуй, даже те, кто в своей жизни навсегда распрощался с математикой, сохраняют воспоминания о «пифагоровых штанах», - квадрате на гипотенузе, равновеликом двум квадратам на катетах.
Причина такой популярности теоремы Пифагора триедина: это npocтoma – кpacoта – значимость.
2. Основная часть
2.1. «Историческая справка».
Пифагор Самосский (570 - 490 гг. до н.э.) - древнегреческий философ и математик, создатель религиозно-философской школы пифагорейцев, политический деятель.
Историю жизни Пифагора трудно отделить от легенд, представляющих его в качестве совершенного мудреца и великого посвящённого во все таинства греков и варваров. Ещё Геродот называл его «величайшим эллинским мудрецом». Он родился на острове Самос, в семье резчика по драгоценным камням. По многим античным свидетельствам, родившийся мальчик был сказочно красив, а вскоре проявил и свои незаурядные способности. Среди учителей юного Пифагора были старец Гермодамант и Ферекид Сиросский.
Пифагор - не только самый популярный ученый, но и самая загадочная личность. Подлинную картину его жизни и достижений восстановить трудно, так как письменных документов о Пифагоре не осталось.
Пифагор основал свою школу в Кротоне (Южная Италия) , которая просуществовала до начала IV в. до н.э., хотя гонения на нее начались практически сразу после смерти Пифагора в 500 г. По сути, это была первая философская школа, религиозно-философское аристократическое братство.
Союз отличался строгими обычаями и высокой нравственностью. Образ жизни пифагорейцев вошел в историю: как рассказывают легенды, учеников школы всегда можно было узнать по их внешнему облику и благородному поведению. Пифагорейская школа положила начало математическим наукам. В ней начали развиваться астрономия и медицина. Звездчатый пятиугольник, или пентаграмма, - пифагорейский символ здравия и тайный опознавательный знак.
Пифагору приписывается изучение свойств целых чисел и пропорций, доказательство теоремы Пифагора и др. Страсть к музыке и поэзии великого Гомера Пифагор сохранил на всю жизнь. И, будучи признанным мудрецом, окруженным толпой учеников, Пифагор начинал день с пения одной из песен Гомера. Воображению юного Пифагора очень скоро стало тесно на маленьком Самосе, и он отправляется в Милет, где встречается с другим ученым — Фалесом. По совету Фалеса Пифагор отправляется в Египет за знаниями. По его совету 22 года набирался мудрости в Египте. В Вавилон он попал не по своей воле. Во время завоевательных походов на Египет его взяли в плен и продали в рабство. Более 10 лет он жил в Вавилоне, изучал древнюю культуру и достижения науки разных стран.
Несмотря на рекомендательное письмо фараона, хитроумные жрецы не спешили раскрывать Пифагору свои тайны, предлагая ему сложные испытания. Но влекомый жаждой знаний, Пифагор преодолел их все. Научившись всему, что дали ему жрецы, он двинулся на родину в Элладу. Пифагора не устраивала жизнь придворного полураба у правителя-тирана Поликрата, и он удалился в пещеры в окрестностях Самоса. Вскоре Пифагор переселяется в Кротон, где и задумывает создать собственную философскую школу.
Только в 60 лет, уже известный учёный Пифагор, всё ещё полный сил, полюбил одну из своих учениц - умницу и красавицу Теано. Последовательница его учения, она стала ему преданной женой и родила семерых детей. Пифагор был очень счастлив в этом браке.
…Прошло 20 лет. Слава о братстве разнеслась по всему миру. Однажды к Пифагору приходит Килон, человек богатый, но злой, желая спьяну вступить в братство. Получив отказ, Килон начинает борьбу с Пифагором, воспользовавшись поджогом его дома. При пожаре пифагорейцы спасли жизнь своему учителю ценой своей жизни, после чего Пифагор затосковал и вскоре покончил жизнь самоубийством.
Важнейшей научной заслугой Пифагора считается систематическое введение доказательства в математике и, прежде всего, в геометрии.
Гениальная догадка Пифагора состоит в том, что в геометрии можно выбрать конечное число истин ( аксиом ), из которых с помощью логических правил выводимо неограниченное число предложений. Так впервые возник аксиоматический метод построения науки.
Числа, равные сумме своих делителей, воспринимались совершенными (6, 28, 496, 8128); дружественными называли пары чисел, каждое из которых равнялось сумме делителей другого (220 и 184). Пифагор впервые разделил числа на четные и нечетные, простые и составные, ввел понятие фигурного числа.
Геометрия у Пифагора была подчинена арифметике. Это ярко выражено в теореме, носящей его имя. По-видимому, уже тогда знали правильные тела: тетраэдр, куб, додекаэдр.
Пифагор считал Землю шаром, движущимися вокруг солнца. Когда в XVI церковь начала преследовать учение Коперника, это учение упорно именовалось пифагорейским.
Музыка – точная наука. Пифагор внёс немалый вклад в развитие теории музыки. Он задумывался над законами, управляющими созвучием и диссонансом. Пифагор смастерил инструмент – балку со струнами, отягощёнными гирьками разного веса.
Он выяснил, что колеблющиеся струны дают приятное для слуха звучание, когда их длины соотносятся как 3:4:6 и на основе этого вывел гармоничные музыкальные интервалы. Были получены простейшие созвучия: октава, квинта, кварта. Это позволило разработать теорию гармонических интервалов.
2.2. «История открытия теоремы»
Открытие теоремы Пифагора окружено ореолом красивых легенд.
Прокл, комментируя последнее предложение I книги «Начал» Евклида, пишет: «Если послушать тех, кто любит повторять древние легенды, то придётся сказать, что эта теорема восходит к Пифагору; рассказывают, что он в честь этого принёс в жертву 100 быков».
Оптимист Михайло Ломоносов писал: «Пифагор за изобретение одного геометрического правила принёс на жертву сто волов. Но ежели бы за найденные в нынешние времена от остроумных математиков правила по суеверной его ревности поступать, то едва бы в целом свете столько рогатого скота сыскалось».
А ироничный Генрих Гейне видел развитие той же ситуации несколько иначе: «Кто знает! Кто знает! Возможно, душа Пифагора переселилась в беднягу, который не смог доказать теорему Пифагора и провалился из-за этого на экзаменах, тогда как в его экзаменаторах обитают души тех быков, которых Пифагор, обрадованный открытием теоремы, принёс в жертву бессмертным богам».
Основываясь, с одной стороны, на сегодняшнем уровне знаний о египетской и вавилонской математике, а с другой на критическом изучении греческих источников, Вандер-Варден (голландский математик) сделал следующий вывод: «Заслугой первых греческих математиков, таких как Фалес, Пифагор и пифагорейцы, является не открытие математики, но ее систематизация и обоснование. В их руках вычислительные рецепты, основанные на смутных представлениях, превратились в точную науку».
Геометрия, у индусов, как и у египтян и вавилонян, была тесно связана с культом. Весьма вероятно, что теорема о квадрате гипотенузы была известна в Индии уже около 18 века до н. э. В первом русском переводе евклидовых «Начал», сделанном Ф. И. Петрушевским, теорема Пифагора изложена так: «В прямоугольных треугольниках квадрат из стороны, противолежащей прямому углу, равен сумме квадратов из сторон, содержащих прямой угол».
В настоящее время известно, что эта теорема не была открыта Пифагором. Однако одни полагают, что Пифагор первым дал ее полноценное доказательство, а другие отказывают ему и в этой заслуге. На протяжении последующих веков были найдены различные другие доказательства теоремы Пифагора. В настоящее время их насчитывается более пятисот, в том числе: геометрических, алгебраических, механических и др. Благодаря такому количеству доказательств, теорема Пифагора попала в Книгу рекордов Гиннеса, как теорема с наибольшим количеством доказательств.
Это говорит о неослабевающем интересе к ней со стороны широкой математической общественности. Теорема Пифагора послужила источником для множества обобщений и плодородных идей. Глубина этой древней истины, по-видимому, далеко не исчерпана.
2.3. «Доказательства теоремы Пифагора»
Формулировка теоремы
- во времена Пифагора теорема звучала так:
«Доказать, что квадрат, построенный на гипотенузе прямоугольного треугольника, равновелик сумме квадратов, построенных на катетах»
или
«Площадь квадрата, построенного на гипотенузе прямоугольного треугольника, равна сумме площадей квадратов, построенных на его катетах».
- современная формулировка:
«В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов».
Школьное доказательство
Рассмотрим прямоугольный треугольник, у которого a и b - катеты, с - гипотенуза.
Докажем, что с2 = а2 + b2.
Доказательство:
Достроим треугольник до квадрата со стороной a + bтак, как показано на рисунке.
Площадь S этого квадрата равна (а + b)2.
C другой стороны, этот квадрат составлен из четырех равных прямоугольных треугольников,
площадь каждого из которых равна 2ab, и квадрата со стороной c, поэтому
S = 4(1/2а2+с2) = 2ab + с2.
Таким образом, (а + b)2 = 2ab + с2, откуда c2 = а2 + b2.
Доказательство Евклида
Дано:
ABC-прямоугольный треугольник
Доказать:
SABDE=SACFG+SBCHI
Доказательство:
Пусть ABDE-квадрат, построенный на гипотенузе прямоугольного треугольника ABC, а ACFG и BCHI-квадраты, построенные на его катетах. Опустим из вершины C прямого угла перпендикуляр CP на гипотенузу и продолжим его до пересечения со стороной DE квадрата ABDE в точке Q; соединим точки C и E, B и G.
Очевидно, что углы CAE=GAB=(A+90°); отсюда следует, что треугольники ACE и AGB( закрашенные на рисунке) равны между собой (по двум сторонам и углу, заключённому между ними). Сравним далее треугольник ACE и прямоугольник PQEA; они имеют общее основание AE и высоту AP, опущенную на это основание, следовательно
SPQEA=2SACE
Точно так же квадрат FCAG и треугольник BAG имеют общее основание GA и высоту AC; значит, SFCAG=2SGAB
Отсюда и из равенства треугольников ACEиGBAвытекает равновеликость прямоугольникаQPBDи квадрата CFGA;аналогично доказывается и равновеликость прямоугольника QPAEи квадрата CHIB.
А отсюда, следует, что квадрат ABDEравновелик сумме квадратов ACFGи BCHI, т.е. теорема Пифагора.
Алгебраическое доказательство
Так как я ещё не знаком с синусами и косинусами углов, то это доказательство я оставлю для 8 класса.
Дано:
ABC - прямоугольный треугольник
Доказать:AB2=AC2+BC2
Доказательство:
1) Проведем высоту CD из вершины прямого угла С.
2) По определению косинуса угла
отсюда следует , AB∙AD=AC2.
3) Аналогично
значит AB∙BD=BC2.
4) Сложив полученные равенства почленно, получим:
AC2+BC2=АВ∙(AD + DB)
AB2=AC2+BC2.
Что и требовалось доказать.
Геометрическое доказательство
Дано:
ABC- прямоугольный треугольник
Доказать: BC2=AB2+AC2
Доказательство:
1) Построим отрезок CD равный отрезку AB на продолжении катета AC
прямоугольного треугольника ABC. Затем опустим перпендикуляр ED к отрезку AD, равный отрезку AC, соединим точки B и E.
2) Площадь фигуры ABED можно найти, если рассматривать её как сумму площадей трёх треугольников:
3) Фигура ABED является трапецией, значит, её площадь равна:
4) Если приравнять левые части найденных выражений, то получим:
BC2=AB2+AC2.
Это доказательство было опубликовано в 1882 году Гэрфилдом.
2.4. «Значение и применение теоремы»
Теорема Пифагора - это одна из самых важных теорем геометрии. Значение её состоит в том, что из неё или с её помощью можно вывести большинство теорем геометрии.
Теорема Пифагора была первым утверждением, связавшим длины сторон треугольников, потом узнали, как находить стороны и углы других треугольников. Возникла целая наука – тригонометрия, которая нашла применение в землемерии. Сейчас её применяют даже для измерения расстояний между космическими кораблями.
Знание теоремы позволяет находить высоту предмета и расстояния до недоступных объектов. Подобные задачи решаются в повседневной жизни: строительстве и машиностроении при проектировании любых строительных объектов.
Доказательство теоремы Пифагора учащиеся средних веков считали очень трудным и называли его Dons asinorum - ослиный мост, или elefuga - бегство «убогих», так как некоторые «убогие» ученики, не имевшие серьезной математической подготовки, бежали от геометрии.
Слабые ученики, заучившие теоремы наизусть, без понимания, и прозванные поэтому «ослами», были не в состоянии преодолеть теорему Пифагора, служившую для них вроде непреодолимого моста.
Из-за чертежей, сопровождающих теорему Пифагора, учащиеся называли ее также «ветряной мельницей», составляли стихи, вроде «Пифагоровы штаны на все стороны равны», рисовали карикатуры.
2.5. «Исторические задачи»
Предлагаю несколько задач, найденных в исторических книгах. Они настолько легкие, что я не буду объяснять их решение.
Задача Бхаскари
«На берегу реки рос тополь одинокий.
Вдруг ветра порыв его ствол надломал.
Бедный тополь упал. И угол прямой
С теченьем реки его ствол составлял.
Запомни теперь, что в этом месте река
В четыре лишь фута была широка
Верхушка склонилась у края реки.
Осталось три фута всего от ствола,
Прошу тебя, скоро теперь мне скажи:
У тополя как велика высота?»
Задача из китайской «Математики в девяти книгах»
«Имеется водоем со стороной в 1 чжан = 10 чи.
В центре его растет камыш, который выступает над водой на 1 чи.
Если потянуть камыш к берегу, то он как раз коснётся его.
Спрашивается: какова глубина воды и какова длина камыша?».
Задача из учебника «Арифметика» Леонтия Магницкого
«Случился некому человеку к стене лестницу прибрати, стены же тоя высота есть 117 стоп. И обреете лестницу долготью 125 стоп. И ведати хочет, колико стоп сея лестницы нижний конец от стены отстояти имать».
Задача о бамбуке из древнекитайского трактата "Гоу-гу"
Имеется бамбук высотой в 1 чжан. Вершину его согнули так, что она касается земли на расстоянии 3 чи от корня (1 чжан = 10 чи).
Какова высота бамбука после сгибания?
3. Заключение
Основной метод, который я использовал в своей работе, - это метод систематизации и обработки данных.
Используя литературу, информационные технологии, я хотел разнообразить материал различными иллюстрациями, привлечь внимание людей различных возрастов и профессий, рассказать своим одноклассникам о Пифагоре и о его очень интересной и важной теореме.
Важность теоремы состоит, прежде всего, в том, что из нее или с ее помощью можно вывести большинство теорем геометрии. К сожалению, невозможно привести все или даже самые красивые доказательства теоремы, однако приведенные примеры убедительно свидетельствуют об огромном интересе сегодня, да и вчера, проявляемом по отношению к ней.
Заложенная Пифагором вера в красоту и гармонию природы, в мудрую простоту и целесообразность её законов, построенных на единых математических принципах, окрыляла творчество титанов современного естествознания от Иоганна Кеплера (1571 - 1630) до Альберта Эйнштейна (1879 - 1955).
Это и есть путеводная звезда современного естествознания, тот вечный кладезь мудрости, который открыл человечеству Пифагор.
Литература.
Печатные источники:
1. Акимова С. Занимательная математика, серия «Нескучный учебник». - СПб.: Тригон, 1997.
2. Волошников А.В. Пифагор: союз истины, добра и красоты. - М.: Просвещение, 1993.
3. Геометрия. Учебник для 7-9 кл. авт. Л. С. Атанасян и др. - М.: Просвещение, 2013 г.
4. Детская энциклопедия «Я познаю мир». «Великие учёные». Авт. Т.Д.Пономарёва. - М.: Астрель, 2004 г.
5. Еленьский Ш. По следам Пифагора. - М, 1961.
6. Литцман В. Теорема Пифагора. - М.: Просвещение, 1960
7. Справочная серия «Эрудит». «История с древнейших времён до XV века». - М.: Мир книги, 2007 г
Электронные источники:
1. «Портреты великих учёных с краткой биографией». Учитель, 2008 г.
2. Большая энциклопедия Кирилла и Мефодия, 2008 г.
3. Электронная энциклопедия: Star World
4. Internet.