Именно математика дает
надежнейшие правила:
кто им следует – тому не опасен
обман чувств.
Л. Эйлер
Введение
Во все времена представителям самых различных специальностей приходится решать задачи, в которых рассматриваются те или иные комбинации, составленные из букв, цифр и иных объектов.
Комбинаторика – раздел математики, в которой изучаются вопросы о том, сколько различных комбинаций, подчинённых тем или иным условиям, можно составить из данных объектов. Особая примета комбинаторных задач – это вопрос, который можно сформулировать таким образом, что он начинался бы словами:
Сколькими способами…?
Сколько вариантов…?
Термин «комбинаторика» происходит от латинского слова «combina», что в переводе на русский означает – «сочетать», «соединять».
Выбор объектов и расположением их в том или ином порядке приходится заниматься чуть ли не во всех областях человеческой деятельности, например конструктору, разрабатывающему новую модель механизма, учёному-агроному, планирующему распределение сельскохозяйственных культур на нескольких полях, химику, изучающему строение органических молекул, имеющих данный атомный состав.
Гипотеза работы: Решение комбинаторных задач с помощью кругов Эйлера развивает творческие способности, помогает при решении олимпиадных задач, имеет практическое применение.
Основополагающий вопрос: А все ли я знаю о комбинаторике?
Проблемный вопрос: Может ли помочь комбинаторика в реальной жизни?
Цель работы: изучить решение логических задач путем построения кругов (диаграмм)Эйлера.
Задачи:
Познакомиться с историей возникновения науки комбинаторики;
Находить возможные комбинации для решения комбинаторных задач
Уметь составлять и решать задачи с помощью кругов Эйлера;
Поработать с ресурсами Internet;
Применять полученные знания в дальнейшем обучении;
Расширить и углубить представление о практическом значении математики в жизни;
Уметь работать с научно-познавательной литературой, анализировать, делать выводы.
Объект исследования : логические задачи.
Методы:отбор источников информации, изучение материала и анализ его.
Актуальность выбранной темы заключается в необходимости решения комбинаторных задач на уроках математики, применении их в жизни, т.к. они имеют социальную значимость, помогают разобраться в новых веяниях жизни. Основа хорошего понимания комбинаторики – умение считать, думать, рассуждать, находить удачные решения задач.
История комбинаторики
Комбинаторика занимается различного вида соединениями, которые можно образовать из элементов конечного множества. Комбинаторные мотивы можно заметить в символике китайской «Книги Перемен»(Vвек до н.э.). По мнению её авторов, все в мире комбинируется из различных сочетаний мужского и женского начал, а также восьми стихий: земля, горы, вода, ветер, гроза, огонь, облака и небо. Большой интерес математиков вызывали магические квадраты.(см.Приложение 1) Некоторые элементы комбинаторики были известны в Индии еще во II в. до н. э. Индийцы умели вычислять числа, которые сейчас называют «сочетания».Античные греки рассматривали комбинаторные задачи. Хрисипп (IIIв. до н. э.) и Гиппарх(II в.до н.э.) подсчитывали сколько следствий можно получить из 10 аксиом. У Хрисиппа получилось более миллиона. Во все века математики исследовали задачи, связанные с перестановками и сочетаниями, включая перестановки с повторениями. Позднее Д.Кардано провел исследование азартной игры в кости . (Азартными называют те игры, в которых выигрыш зависит не только от умения игрока, но и от случайности). Было замечено, что при многократном бросании однородного кубика (все шесть граней которого отмечены соответственно числами 1, 2, 3, 4, 5, 6) число очков от 1 до 6 выпадают в среднем одинаково часто, иными словами, выражаясь языком математики, выпадение определённого числа очков имеет вероятность, равную 1/6. Аналогично вероятность появления на верхней грани кости чётного числа очков равна 3/6, так как из шести равновозможных случаев чётное число появляется только в трёх. Математически заинтересовались азартной игрой П.Ферма и Б.Паскаль. Помимо азартных игр, комбинаторные методы использовались в криптографии - как для разработки шифров, так и их взломов. Комбинаторика и треугольник Паскаля. Паскаль много занимался биномиальными коэффициентами и открыл их способ вычисления. Число сочетаний можно вычислять не через факториал, а с помощью арифметического треугольника. Строится треугольник: его бедра и вершина состоят из единиц, а в основании каждый элемент строки получается суммированием двух стоящих непосредственно над ним элементов.(см.Приложение 2) Паскаль также как и Лейбниц считается основоположником современной комбинаторики .(см.Приложение 3) А вот сам термин комбинаторика придумал Лейбниц. В 1666г. он опубликовал книгу «Рассуждения о комбинаторном искусстве ». Его ученик - Якоб Бернулли (см.Приложение 4) - основатель теории вероятности, изложил много интересного о комбинаторике. Дал научное обоснование теории сочетаний и перестановок. Изучением размещений занимался Я. Бернулли во второй части своей книги «Искусство предугадывания» в 1713 г., в которой указал формулы для числа размещений из n элементов по k, выводились выражения для степенных сумм .
Позднее обнаружили тесную связь между комбинаторными и аналитическими задачами Абрахам де Муавр Джеймс Стирлинг. Они нашли формулы для нахождения факториала. Окончательно комбинаторику, как раздел математики, оформил в своих трудах Эйлер. Кроме перестановок и сочетаний Эйлер изучал разбиение, а также сочетания и размещения с условиями.
Современным отцом комбинаторики считается Пал Эрдёш. (см.Приложение 5) Он ввел вероятностный анализ. Внимание к комбинаторике повысился во второй половине XX века, с появлением компьютеров.
Многие специалисты в области математики и физики считают, что именно комбинаторная задача может стать толчком в развитии всех технических наук. Некоторые из них всерьез утверждают, что комбинаторика является подспорьем для всех современных наук, особенно космонавтики.
Области применения комбинаторики:
учебные заведения ( составление расписаний)
сфера общественного питания (составление меню)
лингвистика (рассмотрение вариантов комбинаций букв)
география (раскраска карт)
спортивные соревнования (расчёт количества игр между участниками)
производство (распределение нескольких видов работ между рабочими)
агротехника (размещение посевов на нескольких полях)
азартные игры (подсчёт частоты выигрышей)
химия (анализ возможных связей между химическими элементами)
экономика (анализ вариантов купли-продажи акций)
криптография (разработка методов шифрования)
доставка почты (рассмотрение вариантов пересылки)
биология (расшифровка кода ДНК)
военное дело (расположение подразделений)
астрология (анализ расположения планет и созвездий
Наиболее разработанным разделом комбинаторики является теория конфигураций. Она рассматривает задачи выбора и расположения элементов некоторого множества, в соответствии с заданными правилами. Элементарными комбинаторными конфигурациями являются сочетания, размещения, перестановки. Для подсчёта числа этих конфигураций используются правила суммы и произведения.
Правило суммы:Если элемент A можно выбрать m способами, а элемент B можно выбрать k способами, то выбор элемента A или B можно осуществить m + k способами.
Правило суммы можно перефразировать на теоретико-множественном языке. Обозначим через | A | число элементов множества A, через A B - объединение множеств A и B, через AxB - декартово произведение множеств A и B. Тогда для непересекающихся множеств A и B выполняется равенство:
| A B | = | A | + | B |.
Обобщением правила суммы является правило произведения.
Правило произведения:Если элемент A можно выбрать m способами, а после каждого выбора элемента A элемент B можно выбрать k способами, тогда, упорядоченную пару элементов (A, B) можно выбрать m*k способами.
Правило произведения можно распространить на выбор последовательности (x1, x2, …, xn) произвольной конечной длиныn. На теоретико-множественном языке правило произведения формулируется так:
| Aх B | = | A | | B |.
Правило размещения.Назовём множество, содержащееn элементов, n-множеством.
Последовательность (x1, x2, …, xk ) длины k без повторяющихся элементов из элементов данного n-множества назовём k-размещением.
Обозначим символом число размещений из n по k элементов (от фран. "arrangement" - размещение). Используя правило произведения, вычислим число . Пусть произвольное размещение длины k имеет вид: (x1, x2, …, xk ).
Элемент x1 можно выбрать n способами. После каждого выбора x1 элемент x2 можно выбрать (n - 1) способами. После каждого выбора элементов x1 и x2 элемент x3 можно выбрать (n - 2) способами, и т.д. После каждого выбора элементов x1, x2, …, xk-1 элемент xk можно выбрать (n -(k - 1)) = (n - k + 1) способами. Тогда, по правилу произведения, последовательность (x1; x2; , …, xk ) можно выбрать числом способов, равным
n(n - 1)(n - 2) … (n - k + 1) = (1.1)
Произведение в левой части равенства (1.1) умножим и разделим на (n - k)!, получим:
. (1.2)
Если в форуме (1.2) k = n, то есть число Pn перестановок из n элементов
Pn = n! (от "permutation"- перестановка).
Правило сочетания.k-подмножество данного n-множества называется k-сочетанием.
Обозначим через число k-сочетаний из данныхn элементов. Формулу для числа получим, рассуждая следующим образом. Если каждое сочетание упорядочить всеми возможными способами, то получим все k-последовательностей изn элементов, без повторений, то есть все k-размещения. Иными словами, Откуда: (1.3) или Предполагая, что n и k - целые положительные числа и 0!=1, сформулируем основные свойства сочетаний.
Основные свойства сочетаний.Условились, что
Как выбрать формулу? (см.Приложение 6) Сводка формул для всех видов соединений. (см.Приложение 7)
Сочетания и размещения широко используются при вычислении классической вероятности случайных событий.
Пример. В корзине находятся 20 орехов, из которых 7 грецких. Наудачу выбирают 5 орехов. Найти вероятность того, что среди выбранных орехов содержатся 2 грецких.
Решение. Число исходов опыта . Случайное событие A - среди пяти выбранных орехов содержатся 2 грецких ореха. Число исходов, благоприятствующих событию A, равно: . Искомая вероятность .
Задачи.
Найти вероятность того, что случайно выбранное 5-значное (десятичное) число не содержит цифры 5.
Предприятие располагает 5 вакансиями для мужчин, 5 вакансиями для женщин и 4 вакансиями для работников любого пола. В отдел кадров предприятия обратилось 20 человек, среди которых 12 мужчин и 8 женщин. Сколькими способами предприятие может заполнить имеющиеся вакансии?
В классе 25 учеников, из которых 13 юношей и 12 девушек. Сколькими способами 25 учеников могут встать в шеренгу так, чтобы юноши после удаления из строя девушек, оказались построенными по росту; аналогично девушки после удаления из строя юношей оказались построенными по росту?
Круги Эйлера
Круги Эйлера – это геометрическая схема, которая помогает находить и/или делать более наглядными логические связи между явлениями и понятиями. А также помогает изобразить отношения между каким-либо множеством и его частью.
На рисунке представлено множество – все возможные игрушки. Некоторые из игрушек являются конструкторами – они выделены в отдельный овал. Это часть большого множества «игрушки» и одновременно отдельное множество (ведь конструктором может быть и «Лего», и примитивные конструкторы из кубиков для малышей). Какая-то часть большого множества «игрушки» может быть заводными игрушками. Они не конструкторы, поэтому мы рисуем для них отдельный овал. Желтый овал «заводной автомобиль» относится одновременно к множеству «игрушки» и является частью меньшего множества «заводная игрушка». Поэтому и изображается внутри обоих овалов сразу.
Автор метода - ученый Леонард Эйлер (1707-1783) (см.Приложение 8) . Он так и говорил о названных его именем схемах: «круги подходят для того, чтобы облегчить наши размышления». Эйлер считается немецким, швейцарским и даже российским математиком, механиком и физиком. Дело в том, что он много лет проработал в Петербургской академии наук и внес существенный вклад в развитие российской науки. Метод Эйлера получил заслуженное признание и популярность. И после него немало ученых использовали его в своей работе, а также видоизменяли на свой лад. Например, чешский математик Бернард Больцано использовал тот же метод, но с прямоугольными схемами. Круги Эйлера имеют прикладное назначение. С их помощью на практике решаются задачи на объединение или пересечение множеств в математике, логике. Круги Эйлера можно разделить их на те, что описывают объединение каких-то понятий и описывают пересечение множеств по какому-то признаку. (см.Приложение9)
Пример пересечения - какую профессию выбрать? Нарисую схему в виде кругов Эйлера. Схема сразу расставит все по местам и поможет определиться с выбором. То, что окажется на пересечении всех трех кругов, и есть профессия, которая не только сможет прокормить, но и будет нравиться.
Чертеж, вроде этого, поможет определиться с выбором:
Рассмотрим несколько примеров задач, которые можно решить с помощью кругов Эйлера.
В языке запросов поискового сервера для обозначения логической операции «ИЛИ» используется символ «|», а для логической операции «И» - символ «&».
В таблице приведены запросы и количество найденных по ним страниц некоторого сегмента сети интернет.
Запрос |
Найдено страниц (в тысячах) |
Крейсер | Линкор |
7000 |
Крейсер |
4800 |
Линкор |
4500 |
Какое количество страниц (в тысячах) будет найдено по запросу Крейсер & Линкор?
Считается, что все вопросы выполняются практически одновременно, так что набор страниц, содержащих все искомые слова, не изменялся за время выполнения запросов.
Решение:
При помощи кругов Эйлера изобразим условия задачи. При этом цифры 1, 2 и 3 используем, чтобы обозначить полученные в итоге области.
Опираясь на условия задачи, составим уравнения:
Крейсер | Линкор: 1 + 2 + 3 = 7000
Крейсер: 1 + 2 = 4800
Линкор: 2 + 3 = 4500
Чтобы найти Крейсер & Линкор (обозначенный на чертеже как область 2), подставим уравнение (2) в уравнение (1) и выясним, что:
4800 + 3 = 7000, откуда получаем 3 = 2200.
Теперь этот результат мы можем подставить в уравнение (3) и выяснить, что:
2 + 2200 = 4500, откуда 2 = 2300.
Ответ: 2300 - количество страниц, найденных по запросу Крейсер & Линкор.
Вывод
Круги Эйлера помогают быстро и просто решить даже достаточно сложные или просто запутанные на первый взгляд задачи. Для этого необходимо запомнить порядок этапов :
Записать краткое условие.
Выполнить рисунок.
Записать данные в круги Эйлера.
Анализировать, рассуждать и записывать результаты в части круга.
Записать ответ.
Задачи:
1. Сколько существует натуральных чисел, меньших 1000, которые делятся на 3 , но не делятся на 2 и на 5?
2. Сколько существует различных десятизначных чисел, состоящих только из нулей и единиц, которые содержат не более трех единиц ?
3. Биатлонист проходит четыре огневые точки, на каждой он делает по 5 выстрелов. Сколько существует различных способов промахнуться не более 4?
4. По результатам одного социологического исследования, было установлено, что из 200 людей смотрящих телевизор, 110 человек смотрят спортивную передачу, 120 – комедии, 85 предпочитаю драмы, 50 смотрят драмы и спорт, 70 – комедии и спорт, 55 смотрят комедии и драмы и 30 человек смотрят все три вида передач. Сколько человек, смотрят спорт или комедии или драмы? сколько человек не смотрят ничего из вышеперечисленного?
5. Человек имеет 10 друзей и течение нескольких дней, приглашает некоторых из них в гости, так что компания, ни разу не повторяется. Сколько дней он может так делать?
6. Найти количество трехзначных чисел, которые делятся на 7, но не делятся на 2 и на 5.
7. На данный момент, в классе 20 учеников, получивших сначала учебного года, хотя одну двойку, 17 учеников, получивших не менее двух двоек, 8 учеников, получивших не менее трех двоек, три ученика получивших не менее 4 двоек, один ученик получивший 5 двоек, больше пяти двое нет ни у кого. Сколько всего двое в журнале?
Задача 1.
Решение:
Определение: множество А называется подмножество множества В, если каждый элемент множества А принадлежит множеству В.
Если в некоторой задаче считается что элементы принадлежат некоторым множествам, то это множество называется универсальным.
Например, в задаче № 1 универсальным множеством можно считать множество чисел, от 1 до 999.
A = количество элементов во множестве А
В = 333
Если число делится на 2 и 3, то число делится на 6
A В = 166
Если число делится на 3 и 5, то число делится на 15
В D = 66
При таком подсчете, мы дважды посчитали числа, которые входят во множество
АВD = 33
(В/А)/D = В - AВ - ВD + AВD = 333 – 166 – 66 + 33 = 134
Задача 2
Определение: Правило суммы.
Все множества способов подсчета можно разбить на пересекающиеся множества. Тогда общее количество способов вычисляется как сумма множеств.
С = = 1-0 единиц
С = = 10-1 единица
С = = 45
С = = 120
120+45+10+1=176
Задача 3.
С = = 1 способ – 0 промахов
C = = 20 способов – 1 промах
С = = 190 способов – 2 промаха
С = =1140 способов – 3 промаха
С = =4845 способов – 4 промаха
Всего 1 + 20 + 190 +1140 + 4845= 6196 способов
Задача 4.
Формула включений и исключений
А ВD = A + В +D - AВ - AD - ВD - AВD
а) А ВD = 110 + 120 + 85 – 70 -55 – 50 + 30 =170
б)200-170=30 человек ничего не смотрят
Задача 5.
Составим таблицу друзей
С = = 10 компаний из 1 человека
С = = 45 компаний из 2 человек
С = = 120 компаний из 3 человек
С = = 210 компаний из 4 человек
С = = 252 компании из 5 человек
С ==210 компаний из 6 человек
С = = 120 компаний из 7 человек
С = =45 компаний из 8 человек
С = =10 компаний из 9 человек
С = = 1 компания из 10 человек
Итого 10+45+120+210+252+210+120+45+10+1= 1023 способов
Задача 6.
Всего 900 трехзначных чисел.
A = 900:7=128 чисел
АВ =900:14=64 числа
АD = 900: 35=25 чисел
АВD =900:70=12 чисел
А = А - АВ - АD + АВD = 128 – 64 – 25 + 12 = 51 число
Задача 7.
Найдем количество учеников, получивших ровно четыре двойки.
3 – 1= 2 ученика получили 4 двойки
Теперь узнаем количество учеников , получивших ровно три двойки, ровно две двойки и ровно одну двойку.
8 – 2 - 1 = 5 учеников получили 3 двойки
17 – 5 – 2 – 1 = 9 учеников получили 2 двойки
20 – 9 – 5 – 2 – 1 = 3 ученика получили 1 двойку
1×3 + 2×9 + 3×5 + 4×2 + 5×1 = 49 двоек в журнале
Вывод
Для решения данных логических задач, использовала круги Эйлера, что позволило успешно решить поставленные задачи. Этот способ показался мне удобным и надежным, так как он упрощает путь к решению задачи, делая его наглядным.
Заключение
В процессе изучения данной темы, я научилась грамотно оперировать такими понятиями как «множество», «объединение множеств», «пересечение множеств», «разность множеств» и использовать их при решении задач. В процессе решения задач я расширила свои знания по математике, познакомилась с ещё одним способом решения задач, который был мне мало знаком. Для решения задач с помощью кругов Эйлера можно воспользоваться алгоритмом, состоящим из нескольких этапов.
Применение кругов Эйлера позволяет легко решить задачи, которые обычным путем разрешимы составлением сложных уравнений. Моя гипотеза подтвердилась. Решения задач с громоздкими условиями и со многими данными просты и не требуют особых умозаключений. Применение кругов Эйлера придает задачам наглядность и простоту.
Практическая значимость заключается в расширении возможностей при решении логических задач. Пригодится для решения задач занимательного характера, позволит применять методы и правила для решения нетрадиционных задач. Приобретенные сведения и знания способствуют повышению интеллектуального развития, помогают развить умение наблюдать и анализировать.
Круги Эйлера – не просто занимательная и интересная штука, но и весьма полезный метод решения задач. Причем не только абстрактных задач на школьных уроках, но и вполне себе житейских проблем. Они заставляют задумываться, подходить к решению какой-либо проблемы с разных сторон, уметь выбирать из множества способов решения наиболее простой, легкий путь. Сам Леонард Эйлер говорил: «круги подходят для того, чтобы облегчить наши размышления».
Список использованной литературы
Галеева Р. А. Тренируем мышление. Задачи на сообразительность / Р. А. Галеева, Г. С. Курбанов, И. В. Мельченко – Изд. 2 – е – Ростов н/Д: Феникс, 2006.
Игнатьев. Е.И. В царстве смекалки, или Арифметика для всех: Книга для семьи и школы. Опыт математической хрестоматии в 3 книгах/Худож. Н.Я. Бойко. – Ростов н/Д: Кн. Изд-во, 1995.
Рыбников К.А.Комбинаторный анализ. Очерки истории.-М.: Изд.мехмата МГУ1996.-124с.
История математики под редакцией Юшкевича А.П. М.: Наука Том 1.С древнейших времен до начала Нового времени.1970.
Нагибин Ф.Ф., Канин Е.С. Математическая шкатулка: Пособие для учащихся 4-8 кл. сред. Шк. – 5-е изд. – М.: Просвещение, 1988.
Увлекательные логические задачки, которые будут интересны детям и взрослым. http://logika.vobrazovanie.ru
Приложение
Приложение 1.
Приложение 2.
Приложение 3.
Приложение 4.
Якоб Бернулли.
Приложение 5.
Математика - это орудие, с помощью которого человек познает и покоряет себе окружающий мир.
Пал Эрдеш.
Приложение 6.
Приложение 7.
Приложение 8.
Приложение 9.