Создание познавательно-развлекательной игры в формате “Математический квиз”

XXIV Международный конкурс научно-исследовательских и творческих работ учащихся
Старт в науке

Создание познавательно-развлекательной игры в формате “Математический квиз”

Туренкова А.А. 1
1МАОУ СОШ 85
Ступаренко С.В. 1
1МАОУ СОШ 85
Автор работы награжден дипломом победителя I степени
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

ВВЕДЕНИЕ

Одними из приоритетных целей обучения математики в настоящее время является развитие интеллектуальных и творческих способностей обучающихся, познавательной активности, интереса к изучению математики, формирования функциональной грамотности, умения применять знания для решения практико-ориентированных задач.

Успешному решению поставленных задач помогают различные современные технологии обучения, в том числе игровые технологии. В настоящее время все большей популярностью пользуются КВИЗ (КВИЗ - от английского «quiz» — задание, вопрос) – это командная интеллектуальная игра, в которой участники за ограниченный промежуток времени отвечают на заранее подготовленные вопросы математического цикла, включая краткие логические вопросы.

Задача участников игр – продемонстрировать свою логику, внимательность и эрудицию, умение самостоятельно работать с первоисточниками, анализировать и систематизировать полученную информацию, руководить работой или работать в составе команды.

Целью настоящей работы является разработка методических материалов (инструкции) по организации и проведению игры в формате КВИЗ по тематике математического цикла (алгебра и геометрия).

Настоящие материалы разрабатываются в виде самостоятельного проекта, содержащего:

  • Цели и задачи игры в формате КВИЗ по предложенной тематике математического цикла и общий алгоритм их решения;

  • Теоретическую часть, с кратким описанием основополагающих положений алгебры и геометрии как науки (теоремы, аксиомы, алгебраические формулы, уравнения, способы и методики решения сложных уравнений);

  • практической части, включающей в себя набор логических вопросов, алгебраических и геометрических заданий и примеров для их практического решения;

  • в разделе Заключении размещаются методические рекомендации по организации и проведению игр в формате КВИЗ в области математического цикла, дается краткий обзор результатов настоящего проекта и оценкой его практической ценности как целевого продукта.

  • В приложении включаются набор слайдов, поясняющие теоретическую и практическую части проекта, и краткий экскурс в историю развития математики как науки.

Результатом настоящего проекта, его продуктом, являются методические рекомендации по организации и проведения игры в формате КВИЗ для последующего их практического применения, с описанием целей и задач данной игры, теоретической и практической частью по предложенной в настоящей работе тематике.

Целью предложенной тематики для игры КВИЗ математического цикла является повышение интереса обучающихся к изучению таких предметов математического цикла как алгебра и геометрия.

Достижение данной цели в ходе игры должно способствовать решение следующих задач:

  1. Создание дополнительных условия для развития интеллектуальных, творческих способностей обучающихся посредством решения математических задач и логических задач, умение быстро логически мыслить, делать правильные умозаключения, грамотно, мотивированно обосновывать ответы на поставленные вопросы.

  2. В ходе подготовки к проведению игры развивать навыки учащихся в самостоятельной работе по поиску и работе с первоисточниками, разработке презентаций, докладов, улучшать их коммуникативные, вербальные и невербальные способности.

  3. Воспитать чувство личной ответственности, коллективизма, умения руководить творческим коллективом (команде) и непосредственно работать в его составе.

  4. Научить участников Игры видеть математические закономерности в окружающем мире, в различных направлениях в науке и техники.

О МАТЕМАТИКЕ ИНТЕРЕСНО И ПОУЧИТЕЛЬНО

    1. Геометрия

      1. Краткий экскурс в историю математики

Математика как наука родилась и не сразу. В общем виде математика, как наука включает в себя два основных раздела – Геометрия и Алгебра. Но родоначальницей математической науки считается Геометрия, от слов «земля+мерить».[1]

Начало геометрии как математической науки положили древние греки и арабские философы много тысячелетий назад. Началом математики как науки в целом считаются предложенные великими древними учеными греками такими как Пифагор, Архимед и Евклид основополагающими аксиомами в области геометрии, имевших в то время, да и действующими в настоящее время наибольшее практическое применение, в основном связанное с архитектурой с строительством крепостей, осадных орудий, дворцов, храмов, жилых зданий, водных каналов и различных фортификационных сооружений военного применения.

      1. Основоположники и выдающиеся математики и философы

В целом зарождении и развитие геометрии как математической науки внесли такие выдающиеся ученые как:

  1. Пифагор Самосский, древнегреческий философ и математик (570—490 гг. до н.). В математике с именем Пифагора связаны систематическое введение доказательств, дедуктивное построение геометрии прямолинейных фигур, создание учения о подобии, построение некоторых правильных многогранников и многоугольников, учение о чётных и нечётных, простых и составных числах, о пропорциях, об арифметических, геометрических и гармонических средних. [2]

  2. Евклид, древнегреческий математик (325 — 265гг. до н. э.). Геометр, автор первого из дошедших до нас теоретических трактатов по математике.

  3. Архимед, древнегреческий ученый (287—212 гг. до н. э.). Сделал множество открытий в области геометрии. Наиболее известно приближение числа π (22/7). Его работы легли в основу математического анализа.

  4. Франсуа Виетт, французский математик, основоположник символической алгебры (1596 1650 гг.). [5]

  5. Рене Декарт, французский философ, математик, физик, физиолог, создавший аналитическую геометрию и современную алгебраическую символику (1540–1603 гг.). [6]

  6. Блез Паскаль, французский математик, механик, физик, литератор, философ и теолог (1623-1662 гг.). [7]

  7. Исаак Ньютон - английский физик, математик, механик и астроном, один из создателей классической физики и математического анализа (1642 -1727 гг.). [8]

  8. Вильгельм Лейбниц, немецкий философ, логик, математик, механик, физик, юрист, историк, дипломат, изобретатель (646-1716гг.). [9]

  9. Михаил Ломоносов — первый русский выдающийся учёный, профессиональный исследователь природы, физик, химик, географом, металлургом, математиком и астрономом (1711–1765 гг.). [10]

  10. Иоганн Карл Фридрих Гаусс (30 апреля 1777 — 23 февраля 1855) — немецкий математик, механик, физик, астроном и геодезист. [11]

  11. Николай Лобачевский, русский математик, один из первооткрывателей неевклидовой («гиперболической») геометрии, деятель университетского образования и народного просвещения (1792-1856). [12]

  12. Владимир Брадис, советский математик-педагог, член-корреспондент АПН СССР (1890- 1975 гг.). [Error: Reference source not found]

      1. Основные понятия, аксиомы и теоремы геометрии [14]

Аксиомы:

Это утверждение, которое принимается без доказательств

Теоремы:

Это утверждение, которое требует доказательств. Теорема – это верное утверждение, которое принимается путем логического рассуждений, которые называются доказательствами. Доказательства каждой теоремы опирается на аксиомы, и ранее доказанные теоремы.

Первичное понятие Евклидовской геометрии [14]:

Точка, - первичное понятие евклидовой геометрии, абстрактный объект без ширины, длины, высоты, других измеримых характеристик. Её свойства задаются аксиомами. Играет критическую роль в доказательствах, конструкциях, измерениях. Используется для определения расстояний, углов, площадей, объёмов. Обычно обозначается заглавными буквами латинского алфавита: точка A, точка B.

      1. Основные аксиомы геометрии [1514]:

    1. Через любые две точки проходит единственная прямая. Каждая точка на прямой разбивает эту прямую на две части так, что точки из разных частей лежат по разные стороны от данной точки, а точки из одной части лежат по одну сторону от данной точки.

    2. На любом луче от его начала можно отложить только один отрезок, равный данному.

    3. Отрезки, полученные сложением или вычитанием соответственно равных отрезков, равны.

    4. Каждая прямая на плоскости разбивает эту плоскость на две полуплоскости. При этом если две точки принадлежат разным частям, то отрезок, соединяющий эти две точки, пересекается с прямой. Если две точки принадлежат одной части, то отрезок, соединяющий эти точки, не пересекается с прямой.

    5. От любого луча на плоскости в заданную сторону можно отложить только один угол, равный данному. Все развернутые углы равны.

    6. Углы, полученные сложением или вычитанием соответственно равных углов, равны.

      1. Основные понятия, свойства и теоремы геометрии [1614]:

К основные понятиям, свойствам и теоремам геометрии, используемым в настоящей работе, относятся []:

Точка, линия, прямая линия, круг, угол, вертикальные углы, смежные углы, внутренние углы, накрест лежащие углы, градус, биссектриса, вписанный в окружность угол, градусная мера вписанного в окружность угла, диаметр, хорда, дуга окружности, острый угол, прямой угол, тупой угол, треугольник, свойства биссектрисы треугольника, сумма углов треугольника, внешний угол треугольника, средняя линия треугольника, прямоугольник, равносторонний треугольник, равнобедренный треугольник, четырех угольник, сумма углов выпуклого четырех угольника, квадрат, прямоугольник, параллелограмм, свойства противолежащих сторон параллелограмма, сумма противолежащих углов параллелограмма, диагонали параллелограмма, ромб, свойства диагоналей ромба, прямоугольник, свойства диагоналей прямоугольника, трапеция, средняя линия трапеции и ее свойства, перпендикуляр, пирамида, правильная пирамида, высота, многоугольник, цилиндр, сфера, многогранник, тетраэдр, ребра, катет, гипотенуза, перпендикуляр, синус, косинус, тангенс, котангенс, гипербола, парабола, теорема синусов, теорема косинусов, теорема об угле вписанном в окружность, подобные фигуры, теорема Пифагора, теорема о подобии треугольников по трем сторонам, признак подобия треугольников по двум сторонам и углу между ними, признак подобия треугольников по двум углам, теорема о параллельных прямых, площадь фигуры (круга, треугольника, прямоугольника, трапеции, многоугольника.

    1. Алгебра

      1. Основное определение алгебры

Алгебра раздел математики, который можно охарактеризовать как обобщение и расширение арифметики; в этом разделе числа и другие математические объекты обозначаются буквами и другими символами, что позволяет записывать и исследовать их свойства в самом общем виде. Слово «алгебра» также употребляется в общей алгебре в названиях различных алгебраических систем. В более широком смысле под «алгеброй» понимают раздел математики, посвящённый изучению операций над элементами множеств произвольной природы, обобщающий обычные операции сложения и умножения чисел [16].

      1. Краткий экскурс в историю развития алгебры [17]

История возникновения алгебры уходит своими корнями в глубокую древность. Вероятно, её появление было связано с первыми астрономическими и другими расчетами, использующими натуральные числа и арифметические операции.

В античной Греции в IV веке появилось первое сочинение, которое являлось непосредственным исследованием абстрактных алгебраических вопросов. Это был трактат мыслителя Диофанта.

С крушением античной цивилизации развитие алгебры прерывается у европейских народов на целое тысячелетие. С VII века центром множества наук, в том числе математики и медицины, становится мусульманский Восток.

В Новое время первым сочинением после трактата Диофанта считается труд купца из Италии Леонардо, который познакомился с арифметикой и алгеброй, путешествуя по востоку.

      1. Основные категории алгебры

Алгебра как раздел математики традиционно включает следующие категории [17]:

  • Элементарная алгебра, которая изучает свойства операций с вещественными числами. В ней постоянные и переменные обозначаются буквенными символами. Элементарная алгебра содержит правила преобразования алгебраических выражений и уравнений с использованием этих символов.

  • Общая алгебра, иногда называемая современной алгеброй или абстрактной алгеброй, где аксиоматизируются и изучаются максимально общие алгебраические структуры, такие, как группы, кольца и поля.

  • Универсальная алгебра, в которой изучаются свойства, общие для всех алгебраических структур (считается подразделом общей алгебры).

  • Линейная алгебра, в которой изучаются свойства векторных пространств (включая матрицы).

  • Алгебраическая комбинаторика, в которой методы абстрактной алгебры используются для изучения вопросов комбинаторики.

      1. Основные разделы алгебры для 9 класса [18]

К основным разделам алгебры, включенным в программу 9 класса общеобразовательных школ относятся следующие разделы:

1) Свойства функций. Квадратичная функция. Функция. Свойства функций. Квадратный трехчлен. Разложение квадратного трехчлена на множители. Функция у=ах2 +bx+c, ее свойства и график. Степенная функция.

2) Уравнения и неравенства с одной переменной Целые уравнения. Дробные рациональные уравнения. Неравенства второй степени с одной переменной. Метод интервалов. Рациональные неравенства.

3) Уравнения с двумя переменными и его график. Системы уравнений второй степени. Решение задач с помощью систем уравнений второй степени. Неравенства с двумя переменными и их системы.

4) Прогрессии Арифметическая и геометрическая прогрессии. Формулы n-го члена и суммы первых n членов прогрессии. Бесконечно убывающая геометрическая прогрессия.

5) Элементы комбинаторики и теории вероятностей. Комбинаторное правило умножения. Перестановки, размещения, сочетания. Относительная частота и вероятность случайного события.

  1. ИГРАЕМ В КВИЗ И УЧИМСЯ

В данный раздел включены:

Примеры для практической игры:

  1. Викторина - по тематике «Выдающиеся математики – ученые с древнейших до настоящих времен.

  2. Разминка – включающая основные понятия геометрии и алгебры.

  3. Переменка

  4. Описание и ход проектной работы

  5. Перечень основного материала на каждом этапе работы

  6. Какой продукт был изготовлен в результате

  7. Основные выводы и предложения по результатам проекта

В качестве практических заданий для выполнения участниками игры формата КВИЗ могут быть предложены следующие разделы:

    1. Математический КВИЗ, «Викторина» [20]

Викторина. Основоположники математики и их достижения

вопроса

Вопрос

Варианты ответа

Правильный ответ

1

Назовите древне греческих философов-математиков в хронологическом порядке

1.Евклид

2.Архимед

3.Пифагор

1.Пифагор

3.Евклид

3.Архимед

2

Назовите великих французских математиков

1.Франсуа Виетт

2.Рене Декарт

3.Исаак Ньютон

1.Франсуа Виетт

2.Рене Декарт

3

Назовите великих русских математиков

1.Михаил Ломоносов

2.Николай Лобачевский

3.Владимир Брадис

Михаил Ломоносов

Николай Лобачевский

4

Назовите великих немецких математиков

1.Карл Гаусс

2.Блез Паскаль

3.Вильгельм Лейбниц

4.Владимир Брадис

1.Карл Гаусс

3.Вильгельм Лейбниц

5

Назовите великих советских математиков

1.Карл Гаусс

2.Николай Лобачевский

3.Владимир Брадис

3.Владимир Брадис

6

Кому из великих математиков принадлежит фраза «Эврика»

И при каких обстоятельствах она была сказана

1.Архимеду

2.Исаку Ньютону

3.Евклиду

1.Архимеду. По легенде, когда Архимед принимал ванну, он понял что объем вытесненной воды равен объему погруженного в воду тела

7

Каким будет год в современном летоисчислении, если по старому стилю он писался как 208

1.1700

2.1640

3.1492

4.1721

5.1698

1. 1700

Перевод летоисчисления согласно Петровской реформе осуществляется по следующим правилам: 7208 год от сотворения мира, или в быту 208 год (для простоты писали только три последних значащих цифры) царским указом принято считать 1700 годом. Т.е. фактически за нулевой отсчет было принято считать 1492 год, следовательно 208 год по старому стилю будет 1700 год по новому стилю (1492+208=1700г.).

8

Как правильно записать 1721 год в старорусской системе счисления XVII века

1.А̃ΨΚΑ

2. Ψ̅ΚΑ

3.ᵵА̃ΨΚΑ

4.ᵵΨ̅ΚΑ

1.А̃ΨΚΑ - полно

2. Ψ̅ΚΑ -кратко

3.ᵵА̃ΨΚΑ- полно

ᵵ - знак тысячи, ставиться перед записью

̅ - титло, знак цифры, ставиться над первой буквой

Старорусский алфавит в обозначении цифр:

А – аз -1

Ψ –пси -700

Κ –коко -20

    1. Математический КВИЗ, «Разминка» [1919]

В ходе разминки предлагается ответить на 10 вопросов. Контрольное время 20 сек. Ответы принимаются в форме специальной карточки с вопросом и ответом команды.

вопроса

Вопрос

Варианты ответа

Правильный ответ

1

Дайте определение точки

1.Один из фундаментальных (неопределяемых) математических объектов, свойства которого задаются системой аксиом

2.Это геометрическая фигура, из которой состоят все остальные геометрические фигуры. Точка не имеет размера и формы. Её нельзя разделить на части

3.Абстрактный объект без ширины, длины, высоты, других измеримых характеристик. Её свойства задаются аксиомами. Обычно обозначается заглавными буквами латинского алфавита: точка A, точка B.

3.Абстрактный объект без ширины, длины, высоты, других измеримых характеристик. Её свойства задаются аксиомами. Обычно обозначается заглавными буквами латинского алфавита: точка A, точка B.

2

Дайте определении основного свойства линии

1.Через любую точку проходит не менее одной прямой.

2.Через любую точку проходит ровно одна прямая.

3Через любые две точки проходит не менее одной прямой

2.Через любую точку проходит ровно одна прямая.

3

Как обозначить цифру «0» римскими цифрами

1.Никак

2.XL

3.XXXL

1.Никак. Такой цифры в риском исчислении нет

4

Основное свойство углов

1Любые две прямые имеют не менее одной общей точки.

2.Любые две прямые имеют ровно одну общую точку.

3Любые три прямые имеют не более одной общей точки.

2.Любые две прямые имеют ровно одну общую точку.

5

Кратчайшее расстояние между вершиной и основанием треугольника

1.Хорда
2.Перпендикуляр
3.Отрезок
4.Медиан

5.Биссектриса

2.Перпендикуляр

6

Дайте правильное определение

синусу

1.Это отношение прилежащего катета к гипотенузе

2.Это отношение двух катетов

3.Это отношение противолежащего катета к гипотенузе

3.Это отношение противолежащего катета к гипотенузе

7

Дайте правильное определение теоремы Пифагора

1.В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов

2. В любом треугольнике квадрат гипотенузы равен сумме квадратов катетов

3. Площадь прямоугольного треугольника построенная на квадрате гипотенузе равна сумме площадей построенных на квадратах катетов

1.В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов

8

Чему равна площадь параллелограмма

1.Площадь параллелограмма равна произведению двух его смежных сторон на косинус угла между ними.

2.Площадь параллелограмма равна произведению двух его смежных сторон на синус угла между ними. 3.Площадь параллелограмма равна произведению двух его смежных сторон на тангенс угла между ними.

1.Площадь параллелограмма равна произведению двух его смежных сторон на синус угла между ними.

9

Чему рана площадь трапеции

1.Площадь трапеции равна произведению полусуммы оснований на высоту

2.Площадь трапеции равна произведению средней линии на высоту.

2.Площадь трапеции равна произведению средней линии на медиану.

1.Площадь трапеции равна произведению полусуммы оснований на высоту

2. Площадь трапеции равна произведению средней линии на высоту.

10

Дайте правильное определение свойству средней лини трапеции

1.Средняя линия трапеции параллельна основаниям и равна их полусумме.

2.Средняя линия трапеции параллельна основаниям и меньше их суммы.

3.Средняя линия трапеции параллельна основаниям и равна их сумме.

1.Средняя линия трапеции параллельна основаниям и равна их полусумме.

    1. Математический КВИЗ. Переменка. Экскурсия по памятным местам [2.1]

Расскажите. Что вы знаете о памятных местах Кузбасса

      1. Томская писаница, музей-заповедная зона

      2. Горная шория

      3. Река кондома

      4. Шерегеш, горнолыжный курорт

      5. Красная горка. Музей

      6. Памятник советскому воину-победителю в Великой Отечественной войне 1941-1945гг

    1. Описание и ход проектной работы

      1. Совместно с куратором проекта определить тему. Обосновать и практическую значимость темы.

      2. Разработать Устав проект и детальный план проекта.

      3. Разработать детальный алгоритм выполнения проект.

      4. Разработать раздел: «Введение».

      5. Разработать раздел: Сформулировать цели и задачи проекта.

      6. Подобрать исходный материал и выполнить разработку теоретической части раздела I проекта

      7. Проработать источники и выполнить разработку практической части раздела II проекта «Викторина».

      8. Проработать источники и выполнить разработку практической части раздела II проекта «Разминка».

      9. Подготовить слайды для раздела «Переменка»

      10. Систематизировать полученный материал и оформить текстовую часть проекта.

      11. Подготовить методические рекомендации для включения в заключительный раздел

      12. Подготовка презентации по настоящему проекту в целом и приложений с включением в них дополнительных слайдов поясняющих теоретическую и практическую части проекта.

      13. Проведение оценки практической ценности результатов (продукта) выполненной работы по его практическому применению в организации и проведению подобного рода игр в общеобразовательных учебных заведениях.

      14. Подготовить заключение, приложения, оформить описание исследования.

      15. Сформулировать тезисы для выступления

  • - выполнить электронную презентацию

  • -подготовить речь для защиты итоговой версии электронной презентации проекта

    1. Методические рекомендации (продукт проекта)

      1. Прежде чем приступить к игре, участники делятся на команды от трех до восьми человек, выбирают капитана, придумывают название и презентуют себя. Одновременно могут играть несколько команд. Команды по очереди отвечают на заранее приготовленные вопросы на разные темы.

      2. Перечень вопросов составляется заранее, по каждому вопросу может быть подготовлено несколько вариантов ответов.

      3. Команда, подготовившая вопросы должна заранее подготовить и мотивированный ответ по каждому вопросу с указанием источника, либо решение практической или логической задачи, математического примера.

      4. Оценка и подведение итогов КВИЗА осуществляет, специально назначенная руководством учебного заведения, судейская комиссия по заранее установленной бальной системе в зависимости от сложности, или вопроса или его познавательного содержания. Состав комиссии должен быть нечетным. Возглавляет комиссию председатель, назначенный руководством учебного заведения, либо избранный членами из своего из своего состава. . Комиссией устанавливается также контрольное время на подготовку ответа по каждому вопросу.

      5. Для развития коммуникативных и организаторских способностей, наиболее подготовленных учащихся, рекомендуется привлекать в состав рабочих групп по организации и проведению игр, а наиболее теоретически подготовленных в состав судейских комиссий. Состав рабочих групп утверждается председателем судейской комиссии из состава представителей ученических коллективов, команды которых принимают участие в игре.

      6. Задача рабочих групп оказывать помощь судейской комиссии в непосредственном и корректном проведении игры (соблюдение ее временного регламент и решение возникающих в ходе игры проблем технического либо организационного характера).

      7. Победители игры отмечаются дипломом или грамотами. Отдельно награждаются авторы лучших вопросов.

      8. Лучшими вопросами признаются те, которые требуют логического осмысления, аналитики или нестандартного решения.

      9. Все решения по подведению итогов комиссия принимает коллегиально простым голосованием.

ЗАКЛЮЧЕНИЕ

Планировали: разработать продукт проекта для практического применения для организации и проведения игры в формате КВИЗ математического цикла;

Ставили цель: повысить интеллектуальный уровень участников игры, приучить их к самостоятельной работе с первоисточниками, развить их вербальные и не вербальные способности, умение руководить или непосредственно работать в творческом коллективе (проектной команде)

Все ли задачи выполнили:

полнота выполнения задач определяется в ходе применения данного продукта на практике, предлагаемые методы и приемы при разработке проектов данного типа использованы в значительном объеме, запланированные этапы работ над проектом в основном завершены, полученный результат (продукт) проекта по мнению автора в основном соотносится с целью проекта, но это проверяется только практикой применения.

СПИСОК ЛИТЕРАТУРЫ

  1. Геометрия, определение: (wikipedia.org)

  2. Пифагор Самосский: https://yandex.ru/search/?text=пифагор+&lr=64&clid=2270455&win=369

  3. Евклид://ru.wikipedia.org/wiki/Евклид

  4. Архимед: https://obrazovaka.ru/alpha/a/arximed-archimedes

  5. Франсуа Виетт: https://yandex.ru/search/?text=франсуа+виет&lr=64&clid=2270455&win=369&src=suggest_W

  6. Рене Декард: https://yandex.ru/search/?text=рене+декарт&lr=64&clid=2270455&win=369&src=suggest_Reformulation.

  7. Блез Паскаль: https://yandex.ru/search/?text=блез+паскаль&lr=64&clid=2270455&win=369&src=suggest_Reformulation

  8. Иссак Ньютон: https://yandex.ru/search/?text=исаак+ньютон+что+сделал&lr=64&clid=2270455&win=369&src=suggest_B

  9. Вильгельм Лейбниц: https://yandex.ru/search/?text=лейбниц&lr=64&clid=2270455&win=369&src=suggest_Pers

  10. Михайло Ломоносов: https://yandex.ru/search/?text=ломоносов&lr=64&clid=2270455&win=369&src=suggest_B.

  11. Карл Гаусс: https://yandex.ru/search/?text=карл+гаусс&lr=64&clid=2270455&win=369&src=suggest_B

  12. Николай Лобачевский: https://yandex.ru/search/?text=лобачевский+николай+иванович&lr=64&clid=2270455&win=369&src=suggest_Reformulation

  13. Владимир Брадис: https://yandex.ru/search/?text=лобачевский+николай+иванович&lr=64&clid=2270455&win=369&src=suggest_Reformulation.

  14. Точка — первичное понятие евклидовой геометрии: https://uchi.ru/znaniya/math/tochka

  15. Основные понятия, аксиомы и теоремы геометрии: Zadania_15-20_teoria_po_geometrii_dlya_OGE.pdf (80-ballov.ru)

  16. Основные формулы и теоремы геометрии:https://geometry2006.narod.ru/gia/Propositions.pdf

  17. Краткий экскурс в возникновении и историю развития алгебры как математической науки https://spravochnick.ru/istoriya/istoriya_poyavleniya_algebry_kak_nauki/

  18. Основные разделы алгебры для 9 класса :https://russchoolnyusa.narod.ru/extern/09/al09d.pdf

  19. Математический КВИЗ, «Разминка»: https://fs.znanio.ru/d5af0e/81/87/395805dbe6ebf67e44d301a0de45517db5.jpg

  20. Математический КВИЗ, «Викторина» – Великие математики и их достижения, презентация онлайн: (ppt-online.org)

  1. ПРИЛОЖЕНИЯ

    1. Экскурс по памятным местам Кузбасса

      1. Томская Писаница

Древнее святилище «Томская писаница» — 300 наскальных рисунков эпохи бронзы и раннего железного века (II—I тысячелетия до н. э.). Музей-заповедник расположен в лесопарковой зоне в 50 км к северо-западу от Кемерово на правом берегу реки Томи

      1. Музейный комплекс «Красная горка»

Кра́сная Го́рка — музейный комплекс в Рудничном районе Кемерова. Располагается на возвышенном правом берегу Томи, в месте, где в 1721 году был открыт кузнецкий уголь. Основан в 1991 году, официальный статус историко-архитектурного музея-заповедника получил 28 мая 1997 года.

      1. Шерегеш- горнолыжный курорт

Горнолыжный курорт Шерегеш, расположившийся на склонах горы Зеленая, хорошо известен любителям зимних видов спорта. Комплекс был открыт больше 30 лет назад и с тех пор вырос в первоклассный курорт, отличное место для активного отдыха всей семьей.

      1. Горная Шория

Кузбасс. Горная Шория. Высота региона от 500 до 1630 метров. Наивысшая точка Горной Шории — гора Патын. Одной из самых популярных является Мустаг (Ледяная гора) — крупный гранитный массив, протянувшийся с юго-запада на северо-восток более чем на 25 км.

      1. Кузбасс. Река Кондома

Река Кондома, одна из красивейших рек Кузбасса

      1. Кемерово. Памятник советскому воину-победителю

8 мая 1949 г. в Берлине был торжественно открыт памятник воину-освободителю в Трептов-парке. Этот мемориал был воздвигнут в память о 20 тысячах советских солдат, погибших в боях за освобождение Берлина, и стал одним из самых известных символов Победы в Великой Отечественной войне. Для создания памятника послужила реальная история, и главным героем сюжета стал солдат ИЗ Кузбасса Николай Масалов

    1. Команды и вопросы

Команда _______________________________________________________

Великие математики и их открытия

А. Исаак Ньютон

 

Б. Владимир Брадис

 

В. Франсуа Виетт

 

Г. Вильгельм Лейбниц

 

Д. Архимед

 

Е. Блез Паскаль

 

Ж. Рене Декарт

 

З. Николай Лобачевский

 

И. Пифагор

 

К. Карл Гаусс

 

Установите соответствие

  1. Создал комбинаторику как науку, заложил основы математической логики, описал двоичную систему счисления с цифрами 0 и 1, на которой основана современная компьютерная техника.

  2. В юном возрасте мгновенно сосчитал сумму чисел от 1 до 100; автор труда по теории чисел «Арифметические исследования»; создал «метод наименьших квадратов».

  3. Заложил основы теории уравнений; ввел систему прямолинейных координат.

  4. Один из основоположников современной физики; автор труда «Математические начала».

  5. Внес огромный вклад в геометрию; автор теоремы «Квадрат, построенный на гипотенузе прямоугольного треугольника, равновелик сумме квадратов, построенных на его катетах»

  6. Придумал формулу для определения площади треугольника по его сторонам. Автор восклицания «Эврика!»

  7. Сконструировал суммирующую машину. Имеет работы по теории чисел, арифметике, теории вероятностей. Нашел общий алгоритм для нахождения признаков делимости чисел. Имеет трактат об «Арифметическом треугольнике». Установил принцип действия жидкостей и газов.

  8. Русский математик – человек, которого называли «Коперником геометрии».

  9. Его иногда называют отцом современной буквенной алгебры, так как он много поработал над введением в алгебру буквенных обозначений, автор теоремы о сумме и произведении корней квадратного уравнения.

  10. Советский математик-педагог, издал «Таблицы четырехзначных логарифмов и натуральных тригонометрических величин», положившие знаменитым «Четырехзначным математическим таблицам», по которым училось ни одно поколение выпускников средних школ.

Команда _______________________________________________________

Разминка. Блиц

  1. _______________________________________________________

  2. _______________________________________________________

  3. _______________________________________________________

  4. _______________________________________________________

  5. _______________________________________________________

  6. _______________________________________________________

  7. _______________________________________________________

  8. _______________________________________________________

  9. _______________________________________________________

  10. _______________________________________________________

Команда _______________________________________________________

Раунд 1. Блиц

  1. _______________________________________________________

  2. _______________________________________________________

  3. _______________________________________________________

  4. _______________________________________________________

  5. _______________________________________________________

  6. _______________________________________________________

  7. _______________________________________________________

  8. _______________________________________________________

  9. _______________________________________________________

  10. _______________________________________________________

Команда _______________________________________________________

Раунд 2.

  1. _______________________________________________________

  2. _______________________________________________________

  3. _______________________________________________________

  4. _______________________________________________________

  5. _______________________________________________________

  6. _______________________________________________________

Команда _______________________________________________________

Раунд 3.

  1. _______________________________________________________

  2. _______________________________________________________

  3. _______________________________________________________

  4. _______________________________________________________

  5. _______________________________________________________

  6. _______________________________________________________

1 раунд

  1. Врач прописал три укола с интервалом в полчаса. За какое время будут сделаны все уколы?

  2. Палку распилили на 12 частей. Сколько сделали распилов?

  3. Чему равно произведение всех цифр?

  4. Приведите пример, когда Кило не значит 1000?

  5. Как записывается ноль римскими цифрами?

  6. Одно из ЕГО приближений , предложенное китайским астрономом и математиком Цзу Чунчжи в V веке н.э., дает точность до шестого разряда после запятой. Напишите, каким ЕГО приближением обычно пользуются в школьных вычислениях?

  7. Этот титул употреблялся в России с 1547 по 1721, в Болгарии с 913 по 1018, с 1185 по 1422 и с 1908 по 1946, в Сербии с 1346 по 1371. А немецкий ученый Карл Гаусс закрепил его за математикой. Назовите титул.

  8. Найдите периметр фигуры (все углы считать прямыми).

  1. Разгадайте ребус.

  1. Можно ли разменять 25 рублей десятью купюрами достоинством 1, 3 и 5 рублей?

2 раунд

  1. 27 июля в Америке отмечают день гамбургера, 2 февраля – день сурка, 14 февраля – день Святого Валентина, а день чего отмечают 14 марта, в день рождения Альберта Эйнштейна? (0)

  1. «Моно», «ди», «поли» - это по-гречески. «Уни», «би», «мульти» - это по-латыни. А как это будет по-русски? Запишите три слова в правильном порядке.

  2. Умение пользоваться этим предметом считалось верхом совершенства, а уж умение решать задачи с его помощью – признаком большого ума. Наполеон Бонапарт был удостоен звания академика наук за решение довольно сложных задач с его помощью. Этот предмет изображен на гербе одного тайного общества, ему установлен памятник. Ведь этот предмет незаменим в архитектуре и строительстве. Нужно заметить, за многие сотни лет конструкция этого предмета не изменилась. Запишите название предмета, который был изобретен в Древней Греции.

(циркуль)

  1. Двенадцатый месяц у нас называется “декабрь”. Это слово происходит от греческого “дека” - десять. Отсюда также слово “декалитр” – 10л, “декада” - 10 дней и т. п. Выходит, что месяц декабрь носит название “десятый”? Чем объяснить это несоответствие?

  2. По римской нумерации:

М-1000; D– 500; C – 100; L – 50; X – 10; V – 5; I -1

В каком году построили дом, если на его фронтоне указана следующая запись

MDCCLXXXIX

(1789)

  1. Пифагор, любивший возиться с числами, обозначил четыре элемента, из которых, по воззрениям древнегреческих мудрецов, состоял мир, то есть огонь, землю, воздух и воду, числами 1, 2, 3, 4 соответственно. Каким числом он обозначал весь мир?

(

3 раунд

  1. Европейская рулетка – азартная игра, представляющая собой вращающееся колесо с 36 секторами красного и чёрного цветов и 37-м зелёным сектором. Как известно, сумма всех чисел на рулетке равна 666. А чему равно произведение?

  2. Найдите сумму 1+2+3+….+98+99+100

  3. Китайская детская задачка. Какой номер у парковочного места, где стоит автомобиль?

  1. Альбрехт Дюрер - немецкий живописецрисовальщик и гравёр, один из величайших мастеров западноевропейского искусства эпохи Северного Возрождения. Магический квадрат 4×4, изображённый на гравюре Альбрехта Дюрера «Меланхолия I», считается самым ранним в европейском искусстве. Сумма чисел на любой горизонтали, вертикали и диагонали равна 34. Эта сумма также встречается во всех угловых квадратах 2×2, в центральном квадрате (10+11+6+7), в квадрате из угловых клеток (16+13+4+1), в квадратах, построенных «ходом коня» (2+12+15+5 и 3+8+14+9), в вершинах прямоугольников, параллельных диагоналям (2+8+15+9 и 3+12+14+5), в прямоугольниках, образованных парами средних клеток на противоположных сторонах (3+2+15+14 и 5+8+9+12).

В каком году была создана эта гравюра?

  1. Хотя в египетской системе счисления её обозначение отсутствует, египетские математики уже со Среднего царства (начало II тысячелетия до н. э.) использовали вместо неё иероглиф нфр («прекрасный»). В китайских записях её символ также отсутствует, для обозначения её значения пользуются одним из «иероглифов императрицы У Цзэтянь». Большинство историков признаёт, что её изобрели индийские математики. Наделению её значения полными правами особенно способствовали труды Леонарда Эйлера.

­

А. Исаак Ньютон

4

Б. Владимир Брадис

10

В. Франсуа Виетт

9

Г. Вильгельм Лейбниц

1

Д. Архимед

6

Е. Блез Паскаль

7

Ж. Рене Декарт

3

З. Николай Лобачевский

8

И. Пифагор

5

К. Карл Гаусс

2

Разминка

Раунд 1

  1. 1 час

  2. 11 распилов

  3. 0

  4. 1 килобайт = 1024 байта

  5. Никак

  6. 3,14

  7. Царица

  8. 52

  9. График

  10. Нельзя

Раунд 2

  1. День числа Пи

  2. Один, два, много

  3. Циркуль

  4. Год начинался с марта

  5. 1789

  6. 10

Раунд 3

  1. 2

  2. 0

  3. 5050

  4. 87

  5. 1514

  6. 0

ПАСПОРТ ПРОЕКТА

параметры

характеристика

1

Тема проекта

Создание познавательно-развлекательной игры в формате “Математический квиз”

2

Направление(предмет)

Геометрия и алгебра

3

Тип проекта

Образовательные. Помогают пользователям оценить свой уровень знаний, улучшить его, познакомиться с новой темой, изучить новый вопрос.

4

Цель проекта

Целью настоящей работы является разработка продукта в виде методических рекомендаций по организации и проведению игры в формате КВИЗ по тематике математического цикла (алгебра и геометрия)

5

Задачи проекта

  1. Создание дополнительных условия для развития интеллектуальных, творческих способностей обучающихся посредством решения математических задач и логических задач, умение быстро логически мыслить, делать правильные умозаключения, грамотно, мотивированно обосновывать ответы на поставленные вопросы.

  2. В ходе подготовки к проведению игры развивать навыки учащихся в самостоятельной работе по поиску и работе с первоисточниками, разработке презентаций, докладов, улучшать их коммуникативные, вербальные и невербальные способности.

  3. Воспитать чувство личной ответственности, коллективизма, умения руководить творческим коллективом (команде) и непосредственно работать в его составе.

  4. Научить участников Игры видеть математические закономерности в окружающем мире, в различных направлениях в науке и техники.

6

Аннотация проекта (актуальность проекта, краткое обоснование выбора, личностная значимость), содержание (кратко)

Представленные в проекте материалы предназначены в качестве методических рекомендаций для организации и проведению игры в формате КВИЗ математического цикла по направлению алгебра и геометрия.

Целью конечного продукта является развитие интеллектуальных и творческих способностей обучающихся, познавательной активности, интереса к изучению математики, формирования функциональной грамотности, умения применять знания для решения практико-ориентированных задач.

Задача участников игр – продемонстрировать свою логику, внимательность и эрудицию, умение самостоятельно работать с первоисточниками, анализировать и систематизировать полученную информацию, руководить работой или работать в составе команды.

7

Планируемые результаты

Подготовить продукт проекта к практическому применению

8

Предполагаемый продукт

Методические рекомендации с подробным планом работ по организации и проведению математической игры в формате КВИЗ

9

Оборудование, ИКТ

Компьютер, сетевое оборудование с доступом в Интернет

10

Разработчик проекта

Ученица 9 «в» класса Муниципального автономного общеобразовательного учреждения «Средняя общеобразовательная школа № 85»

11

Руководитель (ФИО, должность)

Ступаренко Светлана Валерьевна

Просмотров работы: 125