Введение
Преобразование графиков функции является одним из основных математических понятий, непосредственно связанные с практической деятельностью. Преобразование графиков функций впервые встречается в алгебре 9 класса при изучении темы «Квадратичная функция». Квадратичная функция вводится и изучается в тесной связи с квадратными уравнениями и неравенствами. Так же многие математические понятия рассматриваются графическими методами, например в 10 – 11 классах исследование функции дает возможность найти область определения и область значения функции, области убывания или возрастания, асимптоты, интервалы знакопостоянства и др. Так же этот немаловажный вопрос выносится на ГИА. Отсюда следует, построение, и преобразование графиков функции является одной из главных задач обучения математике в школе.
Однако для построения графиков многих функций можно использовать ряд методов, облегчающих построение. Выше сказанное определяет актуальность темы исследования.
Объектом исследованияявляется изучение преобразование графиков в школьной математике.
Предмет исследования –процесс построение и преобразование графиков функции в общеобразовательной школе.
Проблемный вопрос: можно ли построить график не знакомой функции, имея навык преобразования графиков элементарных функций?
Цель: построение графиков функции в незнакомой ситуации.
Задачи:
1. Проанализировать учебный материал по исследуемой проблеме. 2. Выявить схемы преобразования графиков функции в школьном курсе математики. 3. Отобрать наиболее эффективные методы и средства построение и преобразование графиков функции. 4.Уметь применять данную теории в решении задач.
Необходимые начальные знания, умения, навыки:
• определять значение функции по значению аргумента при различных способах задания функции;
• строить графики изученных функций;
• описывать по графику и в простейших случаях по формуле поведение и свойства функций, находить по графику функции наибольшие и наименьшие значения;
• описания с помощью функций различных зависимостей, представления их графически, интерпретации графиков.
Основная часть
Теоретическая часть
В качестве исходного графика функции y = f(x) выберу квадратичную функциюy = x2. Рассмотрю случаи преобразования данного графика, связанные с изменениями формулы, задающей эту функцию и сделаю выводы для любой функции.
1. Функция y = f(x) + a
В новой формуле значения функции (ординаты точек графика) изменяются на число a, по сравнению со «старым» значением функции. Это приводит к параллельному переносу графика функции вдоль оси OY:
вверх, если a > 0; вниз, если a < 0.
ВЫВОД
Таким образом график функции y=f(x)+a, получается из графика функции y=f(x) с помощью параллельного переноса вдоль оси ординат на a единиц вверх, если a > 0, и на a единиц вниз, если a < 0.
2. Функция y = f(x–a),
В новой формуле значения аргумента (абсциссы точек графика) изменяются на число a, по сравнению со «старым» значением аргумента. Это приводит к параллельному переносу графика функции вдоль оси OX: вправо, если a < 0, влево, если a >0.
ВЫВОД
Значит график функции y= f(x - a), получается из графика функции y=f(x) с помощью параллельного переноса вдоль оси абсцисс на a единиц влево, если a > 0, и на a единиц вправо, если a < 0.
3. Функция y = k f(x), где k > 0 и k ≠ 1
В новой формуле значения функции (ординаты точек графика) изменяются в k раз, по сравнению со «старым» значением функции. Это приводит к: 1) «растяжению» от точки (0; 0) вдоль оси ОY в k раз, если k > 1, 2) «сжатию» к точке (0; 0) вдоль оси OY в раз, если 0 < k < 1.
ВЫВОД
Следовательно: чтобы построить график функции y = kf(x), где k > 0 и k ≠ 1 нужно ординаты точек заданного графика функции y = f(x) умножить на k. Такое преобразование называется растяжением от точки (0; 0) вдоль оси ОY в k раз, если k > 1; сжатием к точке (0; 0) вдоль оси OY в раз, если 0 < k < 1.
4. Функция y = f(kx), где k > 0 и k ≠ 1
В новой формуле значения аргумента (абсциссы точек графика) изменяются в k раз, по сравнению со «старым» значением аргумента. Это приводит к: 1) «растяжению» от точки (0; 0) вдоль оси ОX в 1/k раз, если 0 < k < 1; 2) «сжатию» к точке (0; 0) вдоль оси OX. в k раз, если k > 1.
ВЫВОД
И так: чтобы построить график функции y = f(kx), где k > 0 и k ≠ 1 нужно абсциссы точек заданного графика функции y=f(x) умножить на k. Такое преобразование называется растяжением от точки (0; 0) вдоль оси ОX в 1/k раз, если 0 < k < 1, сжатием к точке (0; 0) вдоль оси OX. в k раз, если k > 1.
5. Функция y = - f (x).
В данной формуле значения функции (ординаты точек графика) изменяются на противоположные. Это изменение приводит к симметричному отображению исходного графика функции относительно оси Ох.
ВЫВОД
Для построения графика функции y = - f (x) необходимо график функции y= f(x)
симметрично отразить относительно оси OX. Такое преобразование называется преобразованием симметрии относительно оси OX .
6. Функция y = f (–x).
В данной формуле значения аргумента (абсциссы точек графика) изменяются на противоположные. Это изменение приводит к симметричному отображению исходного графика функции относительно оси ОY.
Пример для функции у = - х² это преобразование не заметно, т. к. данная функция чётная и график после преобразования не меняется. Это преобразование видно, когда функция нечётная и когда ни чётная и ни нечётная.
7. Функция y = |f(x)|.
В новой формуле значения функции (ординаты точек графика) находятся под знаком модуля. Это приводит к исчезновению частей графика исходной функции с отрицательными ординатами (т.е. находящихся в нижней полуплоскости относительно оси Ох) и симметричному отображению этих частей относительно оси Ох.
8. Функция y= f (|x|).
В новой формуле значения аргумента (абсциссы точек графика) находятся под знаком модуля. Это приводит к исчезновению частей графика исходной функции с отрицательными абсциссами (т.е. находящихся в левой полуплоскости относительно оси ОY) и замещению их частями исходного графика, симметричными относительно оси ОY.
Практическая часть
Рассмотрим несколько примеров применения вышеизложенной теории.
ПРИМЕР 1.
Построить график функции, заданной формулой
Решение. Преобразуем данную формулу:
1) Построим график функции
2) Выполним параллельный перенос построенного графика на вектор
(1; 3).
ПРИМЕР 2.
Построить график функции, заданной формулой
Решение. Преобразуем данную формулу, выделив в данном квадратном трехчлене квадрат двучлена:
1) Построим график функции
2) Выполним параллельный перенос построенного графика на вектор
ПРИМЕР 3.
ЗАДАНИЕ ИЗ ЕГЭПостроение графика кусочной функции
График функции График функции y=|2(x-3)2-2|; 1