1. Актуальность работы.
В бесконечном множестве чисел, так же как среди звезд Вселенной, выделяются отдельные числа и целые их «созвездия» удивительной красоты, числа с необыкновенными свойствами и своеобразной, только им присущей гармонией. Надо только уметь увидеть эти числа, заметить их свойства. Всмотритесь в натуральный ряд чисел – и вы найдете в нем много удивительного и диковинного, забавного и серьезного, неожиданного и курьезного. Видит тот, кто смотрит. Ведь люди и в летнюю звездную ночь не заметят… сияние. Полярной звезды, если не направят свой взор в безоблачную высь.
Переходя из класса в класс я познакомился с натуральными, дробными, десятичными, отрицательными, рациональными. В этом году я изучил иррациональные. Среди иррациональных чисел есть особое число, точными вычислениями которого занимаются ученые уже много веков. Оно встретилось мне ещё в 6 классе при изучении темы «Длина окружности и площадь круга». Было акцентировано внимание на то, что довольно часто будем встречаться с ним на уроках в старших классах. Интересны были практические задания на нахождение числового значения числа π. Число π является одним из интереснейших чисел, встречающихся при изучении математики. Оно встречается в разных школьных дисциплинах. С числом π связано много интересных фактов, поэтому оно вызывает интерес к изучению.
Услышав об этом числе много интересного, я сам решил путём изучения дополнительной литературы и поиска в Интернете узнать как можно больше информации о нём и ответить на проблемные вопросы:
- Как давно люди знали о числе пи?
- Для чего необходимо его изучение?
- Какие интересные факты с ним связаны
- Верно ли, что значение пи равно приближённо 3,14
Поэтому, перед собой я поставил цель: исследовать историю числа π и значимость числа π на современном этапе развития математики.
Задачи:
- изучить литературу с целью получения информации об истории числа π;
- установить некоторые факты из «современной биографии» числа π;
-практическое вычисление приближенного значения отношения длины окружности к диаметру.
Объект исследования:
Объект исследования: Число ПИ.
Предмет исследования: Интересные факты, связанные с числом ПИ.
2. Основная часть. Удивительное число π.
Никакое другое число не является таким загадочным, как "Пи" с его знаменитым никогда не кончающимся числовым рядом. Во многих областях математики и физики ученые используют это число и его законы.
Мало какому числу из всех чисел, которые используются в математике, в естественных науках, в инженерном деле и в повседневной жизни, уделяется столько внимания, сколько уделяется числу пи. В одной книге говорится: «Число пи захватывает умы гениев науки и математиков-любителей во всем мире» («Fractals for the Classroom»).
Его можно встретить в теории вероятностей, в решении задач с комплексными числами и прочих неожиданных и далеких от геометрии областях математики. Английский математик Август де Морган назвал как-то "пи" “…загадочным числом 3,14159…, которое лезет в дверь, в окно и через крышу”. Это таинственное число, связанное с одной из трех классических задач Античности - построение квадрата, площадь которого равна площади заданного круга - влечет за собой шлейф драматических исторических и курьезных занимательных фактов.
Некоторые даже считают его одним из пяти важнейших чисел в математике. Но, как отмечается в книге «Fractals for the Classroom», при всей важности числа пи «трудно найти сферы в научных расчетах, где потребовалось бы больше двадцати десятичных знаков пи».
3. Понятие числа пи
Число π — математическая константа, выражающая отношение длины окружности к длине ее диаметра. Число π (произносится «пи») —математическая константа, выражающая отношение длины окружности к длине её диаметра. Обозначается буквой греческого алфавита «пи».
В цифровом выражении π начинается как 3,141592 и имеет бесконечную математическую продолжительность.
4. История числа "пи"
Как считают специалисты, это число было открыто вавилонскими магами. Оно использовалось при строительстве знаменитой Вавилонской башни. Однако недостаточно точное исчисление значения Пи привело к краху всего проекта. Возможно, что эта математическая константа лежала в основе строительства легендарного Храма царя Соломона.
История числа пи, выражающего отношение длины окружности к её диаметру, началась в Древнем Египте. Площадь круга диаметром d египетские математики определяли как (d-d/9)2 (эта запись дана здесь в современных символах). Из приведенного выражения можно заключить, что в то время число p считали равным дроби (16/9)2, или 256/81, т.е. π = 3,160...
В священной книге джайнизма (одной из древнейших религий, существовавших в Индии и возникшей в VI в. до н.э.) имеется указание, из которого следует, что число p в то время принимали равным , что даёт дробь 3,162... Древние греки Евдокс, Гиппократ и другие измерение окружности сводили к построению отрезка, а измерение круга - к построению равновеликого квадрата. Следует заметить, что на протяжении многих столетий математики разных стран и народов пытались выразить отношение длины окружности к диаметру рациональным числом.
Архимед в III в. до н.э. обосновал в своей небольшой работе "Измерение круга" три положения:
Всякий круг равновелик прямоугольному треугольнику, катеты которого соответственно равны длине окружности и её радиусу;
Площади круга относятся к квадрату, построенному на диаметре, как 11 к 14;
Отношение любой окружности к её диаметру меньше 3 1/7 и больше 3 10/71.
По точным расчётам Архимеда отношение окружности к диаметру заключено между числами 3*10/71 и 3*1/7, а это означает, что π = 3,1419... Истинное значение этого отношения 3,1415922653... В V в. до н.э. китайским математиком Цзу Чунчжи было найдено более точное значение этого числа: 3,1415927...
В первой половине XV в. обсерватории Улугбека, возле Самарканда, астроном и математик ал-Каши вычислил пи с 16 десятичными знаками. Ал-Каши произвёл уникальные расчёты, которые были нужны для составления таблицы синусов с шагом в 1'. Эти таблицы сыграли важную роль в астрономии.
Спустя полтора столетия в Европе Ф.Виет нашёл число пи только с 9 правильными десятичными знаками, сделав 16 удвоений числа сторон многоугольников. Но при этом Ф.Виет первым заметил, что пи можно отыскать, используя пределы некоторых рядов. Это открытие имело большое
значение, так как позволило вычислить пи с какой угодно точностью. Только через 250 лет после ал-Каши его результат был превзойдён.
День рождения числа “” .
Неофициальный праздник «День числа ПИ» отмечается 14 марта, которое в американском формате (день/ число) записывается как 3/14, что соответствует приближенному значению числа ПИ.
Существует и альтернативный вариант праздника - 22 июля. Он называется "День приближенного числа Пи". Дело в том, что представление этой даты в виде дроби (22/7) также дает в виде результата число Пи. Считается, что праздник придумал в 1987 году физик из Сан-Франциско Ларри Шоу, обративший внимание на то, дата и время совпадают с первыми разрядами числа π.
Интересные факты, связанные с числом “”
Ученые Токийского университета под руководством профессора Ясумаса Канада сумели поставить мировой рекорд в вычислениях числа Пи до 12411-триллионного знака. Для этого группе программистов и математиков понадобилась специальная программа, суперкомпьютер и 400 часов машинного времени. (Книга рекордов Гиннеса).
Германский король Фридрих Второй был настолько очарован эти числом, что посвятил ему …целый дворец Кастель дель Монте, в пропорциях которого можно вычислить ПИ. Сейчас волшебный дворец находится под охраной ЮНЕСКО.
Как запомнить первые цифры числа “ ”.
Три первые цифры числа = 3,14… запомнить совсем несложно. А для запоминания большего числа знаков существуют забавные поговорки и стихи. Например, такие:
Нужно только постараться
И запомнить всё как есть:
Три, четырнадцать, пятнадцать,
Девяносто два и шесть.
С.Бобров. ”Волшебный двурог”
Тот, кто выучит это четверостишие, всегда сможет назвать 8 знаков числа :
3,1415926…
В следующих фразах знаки числа можно определить по количеству букв в каждом слове:
“Что я знаю о кругах?” (3,1416 );
“Вот и знаю я число, именуемое Пи. – Молодец!”
( 3,1415927 );
“Учи и знай в числе известном за цифрой цифру, как удачу примечать”
( 3,14159265359 )
5. Обозначение числа пи
Первым ввёл обозначение отношения длины окружности к диаметру современным символом пи английский математик У.Джонсон в 1706 г. В качестве символа он взял первую букву греческого слова "periferia", что в переводе означает "окружность". Введённое У.Джонсоном обозначение стало общеупотребительным после опубликования работ Л.Эйлера, который воспользовался введённым символом впервые в 1736 г.
В конце XVIII в. А.М.Лажандр на основе работ И.Г.Ламберта доказал, что число пи иррационально. Затем немецкий математик Ф.Линдеман, опираясь на исследования Ш.Эрмита, нашёл строгое доказательство того, что это число не только иррационально, но и трансцендентно, т.е. не может быть корнем алгебраического уравнения. Поиски точного выражения пи продолжались и после работ Ф.Виета. В начале XVII в. голландский математик из КёльнаЛудольф ван Цейлен (1540-1610) (некоторое историки его называют Л.ван Кейлен) нашёл 32 правильных знака. С тех пор (год публикации 1615) значение числа p с 32 десятичными знаками получило название числа Лудольфа.
6. Как запомнить число "Пи" с точностью до одиннадцати знаков
Число "Пи" - это отношение длины окружности к ее диаметру, оно выражается бесконечной десятичной дробью. В обиходе нам достаточно знать три знака (3,14). Однако в некоторых расчетах нужна большая точность.
У наших предков не было компьютеров, калькуляторов и справочников, но со времен Петра I они занимались геометрическими расчетами в астрономии, в машиностроении, в корабельном деле. Впоследствии сюда добавилась электротехника - там есть понятие "круговой частоты переменного тока". Для запоминания числа "Пи" было придумано двустишие (к сожалению, мы не знаем автора и места первой публикации его; но еще в конце 40-х годов двадцатого века московские школьники занимались по учебнику геометрии Киселева, где оно приводилось).
Двустишие написано по правилам старой русской орфографии, по которой послесогласной в конце слова обязательно ставился "мягкий" или "твердый" знак. Вот оно, это замечательное историческое двустишие:
Кто и шутя, и скоро пожелаетъ
"Пи" узнать число - ужъ знаетъ.
Тому, кто собирается в будущем заниматься точными расчетами, имеет смысл это запомнить. Так чему же равно число "Пи" с точностью до одиннадцати знаков? Сосчитай количество букв в каждом слове и напиши эти цифры подряд (первую цифру отдели запятой).
Такой точности уже вполне достаточно для инженерных расчетов. Кроме старинного существует и современный способ запоминания, на который указал в читатель, назвавшийся Георгием:
Чтобы нам не ошибаться,
Надо правильно прочесть:
Три, четырнадцать, пятнадцать,
Девяносто два и шесть.
Надо только постараться
И запомнить всё как есть:
Три, четырнадцать, пятнадцать,
Девяносто два и шесть.
Три, четырнадцать, пятнадцать,
Девять, два, шесть, пять, три, пять.
Чтоб наукой заниматься,
Это каждый должен знать.
Можно просто постараться
И почаще повторять:
«Три, четырнадцать, пятнадцать,
Девять, двадцать шесть и пять.»
Ну а математики с помощью современных компьютеров могут вычислить практически любое количество знаков числа "Пи".
7. Рекорд запоминания числа пи
Запомнить знаки пи человечество пытается уже давно. Но как уложить в память бесконечность? Любимый вопрос мнемонистов-профессионалов. Разработано множество уникальных теорий и приёмов освоения огромного количества информации. Многие из них опробованы на пи.
Мировой рекорд, установленный в прошлом столетии в Германии - 40 000 знаков. Российский рекорд значений числа пи 1 декабря 2003 года в Челябинске установил Александр Беляев. За полтора часа с небольшими перерывами на школьной доске Александр написал 2500 цифр числа пи.
До этого рекордным в России считалось перечислить 2000 знаков, что удалось сделать в 1999 году в Екатеринбурге. По словам Александра Беляева - руководителя центра развития образной памяти, такой эксперимент со своей памятью может провести любой из нас. Важно лишь знать специальные техники запоминания и периодически тренироваться.
Заключение.
Число пи появляется в формулах, используемых во многих сферах. Физика, электротехника, электроника, теория вероятностей, строительство и навигация - это лишь некоторые из них. И кажется, что подобно тому как нет конца знакам числа пи, так нет конца и возможностям практического применения этого полезного, неуловимого числа пи.
В современной математике число пи - это не только отношение длины окружности к диаметру, оно входит в большое число различных формул.
Эта и другие взаимозависимости позволили математикам ещё глубже выяснить природу числа пи.
Точное значение числа π в современном мире представляет собой не только собственную научную ценность, но и используется для очень точных вычислений (например, орбиты спутника, строительства гигантских мостов), а также оценки быстродействия и мощности современных компьютеров.
В настоящее время с числом π связано труднообозримое множество формул, математических и физических фактов. Их количество продолжает стремительно расти. Всё это говорит о возрастающем интересе к важнейшей математической константе, изучение которой насчитывает уже более двадцати двух веков.
Проведенная работа мне была интересной. Я хотел узнать об истории числа π, практическом применении и думаю, что достиг поставленной цели. Подводя итог работы, я прихожу к выводу, что данная тема актуальна. С числом π связано много интересных фактов, поэтому оно вызывает интерес к изучению. В своей работе я подробнее познакомился с числом – одной из вечных ценностей, которой человечество пользуется уже много веков. Узнал некоторые аспекты его богатейшей истории. Выяснил, почему древний мир не знал правильного отношения длины окружности к диаметру. Посмотрел наглядно, какими способами можно получить число. На основе экспериментов вычислил приближенное значение числа различными способами. Провел обработку и анализ результатов эксперимента.
Любой школьник сегодня должен знать, что обозначает и чему приближенно равно число. Ведь у всех первое знакомство с числом , использование его при вычислении длины окружности, площади круга происходит в 6 классе. Но, к сожалению, эти знания остаются для многих формальными и уже через год – два мало кто помнит не только то, что отношение длины окружности к её диаметру одно и то же для всех окружностей, но даже с трудом вспоминают численное значение числа, равное 3,14.
Я попробовал приподнять завесу богатейшей истории числа, которым человечество пользуется уже много веков. Самостоятельно составил презентацию к своей работе.
История чисел увлекательна и загадочна. Я хотел бы продолжить исследования других удивительных чисел в математике. Это станет объектом моих следующих исследовательских изучений.
Список литературы.
1. Глейзер Г.И. История математики в школе IV- VI классы. – М.: Просвещение, 1982.
2. Депман И.Я., Виленкин Н.Я. За страницами учебника математики - М.: Просвещение, 1989.
3. Жуков А.В.Вездесущее число «пи». - М.: Едиториал УРСС, 2004.
4. Кымпан Ф. История числа «пи». - М.: Наука, 1971.
5. Свечников А.А. путешествие в историю математики – М.: Педагогика – Пресс, 1995.
6. Энциклопедия для детей. Т.11.Математика – М.: Аванта +, 1998.
Интернетресурсы:
- http:// crow.academy.ru/ materials_/pi/history.htm
- http://hab/kp.ru// daily/24123/344634/