Сферические зеркала

V Международный конкурс научно-исследовательских и творческих работ учащихся
Старт в науке

Сферические зеркала

Маршалкин  В.Ю. 1
1Муниципальное бюджетное общеобразовательное учреждение средняя общеобразовательная школа №6
Милостивая  Н.Ю. 1
1Муниципальное бюджетное общеобразовательное учреждение средняя общеобразовательная школа №6
Автор работы награжден дипломом победителя III степени
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

Актуальность выбранной темы.

Мы современные школьники - поколение, выросшее на мобильных телефонах и компьютерах, планшетах, хорошо разбираемся в гаджетах, умеем молниеносно находить информацию в Интернете, но пользуемся всеми научными достижениями и не задумываемся а как эти благо цивилизации были изобретена и какой путь они прошли до нас. Взять хотя бы исторический путь зеркал, их поразительные свойства и современное применение.

Обобщить эти материалы в одной работе, отличить мистику от реальности – было моей задачей.

Цели и задачи исследовательской работы

Цель моей работы – донести до нашего поколения историю возникновения зеркал, рассказать о начальном этапе их развития, показать самые уникальные свойства зеркал и самые уникальные способы их применения.

Задачи:

экспериментальное и теоретическое изучение свойств зеркал различной формы: плоских, сферических и асферических, которые применяются в быту и технике

2.Теоритический материал.

2.1 История плоских зеркал

Ученые считают, что возраст зеркал насчитывает уже более семи тысяч лет. До появления зеркального стекла использовали хорошо наполированные разные виды металлов, к примеру, золото и серебро, олово и медь, бронза, и камень.

Согласно древнегреческим мифам, именно собственное изображение, увиденное медузой Горгоной на щите Персея, настолько испугало ее, что она превратилась в камень. Многие археологи считают наиболее ранними зеркалами полированные кусочки обсидиана, которые были найдены в Турции, а насчитывают они около 7500 лет. Но использовать подобные зеркальные поверхности, чтобы тщательно рассмотреть себя, к примеру, сзади, было нельзя, да и оттенки различать было очень проблематично.

Однако купить зеркало тогда было очень трудно, стоимость его к тому же была очень высока, ведь наполировать металл до блеска было непросто. Стоит учитывать, что подобная чистка была необходима зеркальной поверхности ежедневно, ведь она постоянно окислялась.

Годом рождения настоящего зеркала считается 1279 год, когда францисканцем Джоном Пекам был описан уникальный, в то время, способ покрытия обычного стекла тончайшим слоем свинца.

В это время появилась первая багетная мастерская, ведь технология производства подобного чуда была непростой. Слой фольги из олова клали на бумагу, которую с обратной стороны покрывали ртутью, после чего на нее опять помещали лист бумаги, и только после этого накладывали стекло, которое служило неким прессом для этого слоеного пирога, откуда в это время аккуратно вытаскивали бумагу. Конечно, зеркало было очень мутным. Эта технология просуществовала без существенных изменений практически до 1835 года. Именно в этом году профессор Либих обнародовал весьма интересную гипотезу о том, что покрытие серебром вместо олова сделает зеркала более ясными и сверкающими.

Венеция очень ревностно охраняла тайну создания этого чудо -товара. Зеркальщикам было запрещено покидать республику, в ином случае угрожали расплатой над их родными и близкими. По следам тех, кто особенно упорствовал, посылали убийц. Поэтому целых три века это был невероятно дорогой и фантастически редкий товар, позволить себе сделать зеркала могли лишь очень состоятельные люди.

Любителем зеркал был и французский король Людовик XIV. В его время был разгадан секрет производства венецианских зеркал и цены начали резко уменьшаться. Теперь этот атрибут интерьера можно было все чаще встретить в стенах обычных граждан. В восемнадцатом веке больше половины парижан имели зеркала. Королевский дворец в Париже в это время имел особое превосходство, именно здесь впервые появилось напольное зеркало.

Появившаяся возможность наблюдать за собой со стороны, привела к огромным последствиям: все состоятельные граждане стали более тщательно следить не только за своим внешним видом, но и своим поведением.

2.2 История сферических зеркал.

Еще более интересна история сферических зеркал.

История возникновения сферического стеклянного зеркала уходит в глубь веков, в Венецию конца XII - начала XIII века. В то время венецианские стеклодувы научились выдувать из стекла небольшие колбы, которые в размягченном виде наполнялись через трубку оловом. Когда колбы остывали, их нарезали на куски в форме выпуклых линз. Эти выпуклые зеркала, представляющие из себя часть сферы, называли «воловий глаз». Они мало чем походили на современные зеркала. Изображение в них было искаженным, слегка уменьшенным и прямым. Чтобы представить отражение в таком зеркале, достаточно взглянуть на «Автопортрет в выпуклом зеркале» итальянского художника Пармиджанино.

А вот история произошедшая с Архимедом.

Этот день 212 года до н.э. уцелевшим римлянам запомнился на всю жизнь. Почти полтысячи маленьких солнц вдруг загорелись на крепостной стене. Сначала они просто ослепили, но через некоторое время произошло нечто фантастическое: передовые римские корабли, подошедшие к Сиракузам, один за другим вдруг начали вспыхивать, как факелы. Бегство римлян было паническим...

Вообще говоря, о необычном архимедовом оружии вспомнили мы не ради исторических изысканий. Нас интересуют уникальные свойства вогнутых зеркал. Да-да, вогнутых зеркал. Ведь Архимедом, по существу, было изобретено "распределенное" вогнутое зеркало. Составленное из множества обычных зеркал, отражения от которых направлены в одну точку, оно способно концентрировать в своем фокусе огромную энергию. В случае с римскими кораблями это — световая и тепловая энергии.

Вогнутые зеркала издавна использовали и для других целей — "магических". Более того, их всегда считали самыми эффективными в этом деле. Маги и колдуны полагали, что вогнутость позволяет собрать в одном фокусе некий "астральный свет". Мистики говорили, что там, "где происходит сосредоточение света, появляется эфирный фокус — узел вибраций эфирной среды".

С помощью больших вогнутых чаш вызывали духов умерших. Об этом упоминают — кто смутно, кто яснее — древние авторы. Некоторые из них даже указывают места, где происходили эти таинства. В конце 1950-х годов по такой "наводке" греческий археолог Сотир Дакар обнаружил в Эпире (Западная Греция) подземную пещеру. Самой интересной для нас находкой в этой пещере были остатки огромного бронзового котла. По мнению ряда исследователей, его внутренняя часть, будучи хорошо отполированной, могла вызывать видения величиной в человеческий рост.

Но есть вогнутые зеркала, назначение которых остается тайной и по сей день. К ним, например, относятся так называемые "зеркала Тулу", во множестве найденные в захоронениях вблизи всемирно известного плато Наска в Перу. Диаметром до полуметра, зеркала эти изготовлены из тщательно отполированных металлов: золота, серебра, меди и их сплавов. Для чего они были нужны? Для передачи сигналов (отраженный от них солнечный луч виден за несколько километров)? Для проецирования огромных рисунков на плато Наска? Для магических целей? А может, с помощью этих зеркал краснокожие жрецы получали те самые знания, что и сегодня поражают ученых своей точностью? Кто знает. Во всяком случае, есть сведения, что некоторые научные открытия были сделаны именно благодаря вогнутым зеркалам.

Одно из таких загадочных зеркал принадлежало крупнейшему ученому XIII века монаху Роджеру Бэкону (1214-1294). Большинство научных работ Бэкона до сих пор не напечатаны, но и то, что сегодня известно, поражает воображение. Непостижимым образом он заглядывал на сотни лет вперед: предсказал изобретение микроскопа и телескопа, автомобиля и самолета, кораблей, приводимых в действие моторами; за двести лет до изобретения пороха Бертольдом Шварцем описал состав и действие этого взрывчатого вещества.

В наше время большинство производимых зеркал представляет собой зеркала, изготовленные из листового стекла, полированного или неполированного, толщиной 3-7 мм.

2.3. Физика сферических зеркал.

2.3.1. Изображение в плоском зеркале.

Изображение предмета, даваемое плоским зеркалом, формируется за счет лучей, отраженных от зеркальной поверхности.

На рисунке показано, как глаз воспринимает изображение точки S в зеркале. Лучи SО, SО1 и SО2отражаются от зеркала в соответствии с законами отражения. Луч падает на зеркало перпендикулярно ( = 0°) и, отражаясь ( = 0°), не попадает в глаз. Лучи SО1 и SО2 после отражении попадают в глаз расходящимся пучком, глаз воспринимает светящуюся точку S1 за зеркалом. На самом деле в точке S1 сходятся продолжения отраженных лучей (пунктир), а не сами лучи (это только кажется, что попадающие в глаз расходящиеся лучи исходят из точек, расположенных в "зазеркалье"), поэтому такое изображение называют воображаемым (или мнимым), а точка из которой, как нам кажется, исходит каждый пучок, и есть точка изображения. Каждой точке объекта соответствует точка изображения.

Вследствие закона отражения света мнимое изображение предмета располагается симметрично относительно зеркальной поверхности. Размер изображения равен размеру самого предмета.

В действительности световые лучи не проходят сквозь зеркало. Нам только кажется, будто свет исходит от изображения, поскольку наш мозг воспринимает попадающий к нам в глаза свет как свет от источника, находящегося перед нами. Так как лучи в действительности не сходятся в изображении, поместив лист белой бумаги или фотоплёнку в то место, где находитсяизображение, мы не получим никакого изображения. Поэтому такое изображение называют мнимым.Его следует отличать от действительного изображения , через которое свет проходит и которое можно получить, поместив там, где оно находится, лист бумаги или фотоплёнку. Как мы увидим в дальнейшем, действительные изображения можно формировать с помощью линз и кривых зеркал (например сферических).

Точки S и S' симметричны относительно зеркала: SО = ОS'. Их ображение в плоском зеркале воображаемое, прямое (не обратное), одинаковое по размерам с предметом и расположено на таком же расстоянии от зеркала, что и сам предмет.

2.3.2. Сферическое зеркало.

Отражающими поверхности не обязательно должны быть плоскими. Изогнутые зеркала чаще всего бывают сферическими, т. е. имеют форму сферического сегмента. Сферические зеркала бывают вогнутыми и выпуклыми. Сферическое вогнутое зеркало представляет собой тщательно отполированную шаровую поверхность. На рисунках далее точка О - центр сферической поверхности, которая образует зеркало. На рисунке буквой С отмечен центр сферической зеркальной поверхности, точка О — вершина зеркала. Прямая линия СО, проходящая через центр зеркальной поверхности С и вершину зеркала О, называется оптической осью зеркала.

Пустим от фонаря на зеркало пучок лучей света, параллельных оптической оси зеркала. После отражения от зеркала лучи этого пучка соберутся в одной точке F, лежащей на оптической оси зеркала. Эта точка называется фокусом зеркала. Если источник света поместить в фокусе зеркала, то лучи отразятся от зеркала, как показано на рисунке.

Расстояние OF от вершины зеркала до фокуса называется фокусным расстоянием зеркала, оно равно половине радиуса ОС сферической поверхности зеркала, то есть OF= 0,5 ОС.

Приблизим к вогнутому зеркалу источник света (зажжённую свечу или электрическую лампу) настолько, чтобы в зеркале было видно его изображение. Это изображение— мнимое — расположено за зеркалом. По сравнению с предметом оно увеличенное и прямое.Станем постепенно удалять источник света от зеркала. При этом будет удаляться от зеркала и его изображение, размеры его будут увеличиваться, а затем мнимое изображение исчезнет. Но теперь изображение источника света можно получить на экране, расположенном перед зеркалом, то есть можно получить действительное изображение источника света.Чем дальше будем отодвигать источник света от зеркала, тем ближе к зеркалу придётся располагать экран, чтобы получить на нём изображение источника. Размеры изображения при этом будут уменьшаться.Все действительные изображения по отношению к предмету оказываются обратными (перевёрнутыми). Их размеры в зависимости от расстояния предмета до зеркала могут быть большими, меньшими, чем предмет, или равными размерам предмета (источника света).

Таким образом, расположение и размеры изображения, получаемого с помощью вогнутого зеркала, зависят от положения предмета относительно зеркала.

2.3.3. Изображение в сферическом вогнутом зеркале.

Сферическое зеркало называется вогнутым, если отражающей поверхностью служит внутренняя сторона сферического сегмента, т. е. если центр зеркала находится от наблюдателя дальше его краёв.

Если размеры вогнутого зеркала малы в сравнении с его радиусом кривизны, то есть на вогнутое сферическое зеркало падает пучок лучей, параллельный главной оптической оси, после отражения от зеркала лучи пересекутся в одной точке, которая называется главным фокусом зеркала F . Расстояние от фокуса до полюса зеркала называют фокусным расстоянием и обозначают той же буквой F . У вогнутого сферического зеркала главный фокус действительный. Он расположен посередине между центром и полюсом зеркала (центром сферической поверхности), значит фокусное расстояние: ОF = СF = R/2.

Пользуясь законами отражения света, можно геометрически построить изображение предмета в зеркале. На рисунке светящаяся точка S расположена перед вогнутым зеркалом. Проведём от неё к зеркалу три луча и построим отражённые лучи. Эти отражённые лучи пересекутся в точке S1. Так как мы взяли три произвольных луча, исходящих из точки S, то и все другие лучи, падающие из этой точки на зеркало, после отражения пересекутся в точке S1 Следовательно, точка S1 является изображением точки S.Для геометрического построения изображения точки достаточно знать направление распространения двух лучей, выходящих из этой точки. Лучи эти могут быть выбраны совершенно произвольно. Однако удобнее пользоваться лучами, ход которых после отражения от зеркала заранее известен.

Построим изображение точки S в вогнутом зеркале. Для этого проведём из точки S два луча. Луч SA параллелен оптической оси зеркала; после отражения он пройдёт через фокус зеркала F. Другой луч SB проведём через фокус зеркала; отразившись от зеркала, он пойдёт параллельно оптической оси. В точке S1 оба отражённых луча пересекутся. Эта точка и будет изображением точки S, в ней пересекутся все отражённые зеркалом лучи, идущие из точки S.Изображение предмета складывается из изображений множества отдельных точек этого предмета. Чтобы построить изображение предмета в вогнутом зеркале, достаточно построить изображение двух крайних точек этого предмета. Изображения остальных точек расположатся между ними. На рисунке предмет изображён в виде стрелки АВ.Построив указанным выше способом изображения точек А и В, получим изображение всего предмета А1В1. Предмет АВ находится за центром шаровой поверхности зеркала (за точкой С). Его изображение А1В1 оказалось между фокусом F и центром шаровой поверхности зеркала С. По отношению к предмету оно уменьшенное и перевёрнутое. Изображение А1В1 действительное, так как отражённые от зеркала лучи действительно пересекаются в точках А1 и В1. Такое изображение можно получить на экране.

2.3.4. Изображение в сферическом выпуклом зеркале.

Сферическое зеркало называетсявыпуклым, еслиотражение происходит от внешней поверхности сферического сегмента, т. е. если центр зеркаланаходится к наблюдателю ближе, чем края зеркала.

Если параллельный пучок лучей падает навыпуклоезеркало, то отраженные лучи рассеиваются, но их продолжение (пунктир) пересекаются у главном фокусе выпуклого зеркала. То есть главный фокус выпуклого зеркала является мнимым.

Фокусным расстояниям сферических зеркал приписывается определенный знак, для выпуклого где R – радиус кривизны зеркала: OF=CF=-R/2.

Свойство вогнутых зеркал фокусировать параллельный их оси пучок света используется в телескопах-рефлекторах. На обратном явлении — преобразовании в зеркале пучка света от источника, находящегося в фокусе, в параллельный пучок — основано действие прожектора. Зеркала, применяемые в сочетании с линзами, образуют обширную группу зеркально-линзовых систем. В лазерах зеркалах применяют в качестве элементов оптических резонаторов. Отсутствие хроматических аберраций обусловило использование зеркал в монохроматорах (особенно инфракрасного излучения) и многих др. приборах.

Помимо измерительных и оптических приборов, зеркала применяют и в др. областях техники, например в гелиоконцентраторах, гелиоустановках и установках для зонной плавки (действие этих устройств основано на свойстве вогнутых зеркал концентрировать в небольшом объёме энергию излучения). В медицине из зеркал наиболее распространён лобный рефлектор — вогнутое зеркало с отверстием посередине, предназначенное для направления узкого пучка света внутрь глаза, уха, носа, глотки и гортани. Зеркала многообразных конструкций и форм применяют также для исследований в стоматологии, хирургии, гинекологии и т.д.

Вогнутые зеркала используют для изготовления прожекторов: источник света помещают в фокусе зеркала, отраженные лучи идут от зеркала параллельным пучком. Если взять вогнутое зеркало больших размеров, то в фокусе можно получить очень высокую температуру. Тут можно разместить резервуар с водой для получения горячей воды,например, для бытовых нужд за счёт энергии Солнца.

Спомощью вогнутых зеркал можно направить большую часть света, излучаемого источником, в нужном направлении. Для этого вблизи источника света помещается вогнутое зеркало, или, как его называют, рефлектор. Так устраиваются автомобильные фары, проекционные и карманные фонари, прожекторы.

Прожектор состоит из двух главных частей: мощного источника света и большого вогнутого зеркала. При указанном на рисунке расположении источника и зеркала отражённые от зеркала лучи света идут почти параллельным пучком.

Крупный прожектор может освещать предметы, находящиеся на расстоянии 10—12 км от него. Такой прожектор виден с очень больших расстояний, если глаз окажется в области посылаемого прожектором светового пучка. Мощные прожекторы используются при устройстве маяков. Кроме того, вогнутые зеркала применяются в телескопах-рефлекторах, с помощью которых наблюдают небесные тела.

Практическая часть

1. Исследование параллельных лучей.

Цель: Показать, что параллельные лучи сходятся в фокусе F и точечный источник света, помещенный в F, создает в вогнутом зеркале параллельный пучок света.

Приборы и материалы: вогнутое зеркало, источник света, собирающая линза,

Ход работы:

При помощи проектора с тремя щелями направьте три параллельных луча на вогнутое зеркало (рис., а).

Измерить линейкой расстояние FP, чтобы получить фокусное расстояние. Для иллюстрации принципа обратимости света поместите «точечный» источник света в F, фокус зеркала (см. рис., б). Образуется параллельный пучок света.

Если на зеркало падают параллельные лучи, которые не параллельны главной оптической оси, то они сфокусируются в точке F1, которая лежит прямо под F.

Если на зеркало падают параллельные лучи, которые не параллельны главной оптической оси, то они сфокусируются в точке F1, которая лежит прямо под F.

Вывод: лучи, идущие параллельно оптической оси пересекаются в фокусе.

Фокус вогнутого зеркала.

Цель: измерить фокусное расстояние вогнутого зеркала

Приборы и материалы: вогнутое зеркало, источник света( окно в солнечный день), белая картонка,

Ход работы:

1.Направьте вогнутое зеркало на ярко освещенное окно в солнечный день. Держите белую картонку между зеркалом и окном, как показано на рисунке.

2. Перемещайте картонку (или зеркало), пока на ней не образуется четкое перевернутое изображение окна. Это изображение появится на картонке, когда она окажется в фокальной плоскости. Измерьте линейкой расстояние от зеркала до картонки.

3. Повторите несколько раз фокусирование изображения окна, чтобы получить различные значения.

4. Подсчитайте среднее значение фокусного расстояния вогнутого зеркала.

5.На главной оптической оси существует точка С, все лучи, исходящие из нее, падают на зеркало нормально (перпендикулярно) и отражаются через эту же точку (рис., а). Эта точка называется центром кривизны С зеркала и является центром сферы, частью которой является это зеркало. Расстояние от полюса Р зеркала до центра кривизны С известно как радиус кривизны вогнутого зеркала (рис., б).

6.Увеличить интенсивность света, идущего направо от источника, возможно помещением источника света в точку С, поскольку свет слева от лампы после падения на зеркало будет отражен обратно через С.

Вывод: Мы показали теоретически и экспериментально, что r = 2ƒ, это означает, что фокусное расстояние вогнутого зеркала также может быть подсчитано по формуле ƒ = r/2.

Создание прожектора.

Цель : практическое создание прожектора

Приборы и материалы: мощный источник света, большое вогнутое зеркало,

Ход работы:

Прожектор состоит из источника света (лампы, дающей ненаправленный, или направленный под широким углом свет) ирефлектора и/или линзы, концентрирующих свет в нужном направлении. В качестве рефлектора обычно используетсяпараболическое, либо гиперболическое (в случае использования совместно с линзой) зеркало. В качестве линзы обычно используется линза Френеля, что позволяет достичь меньших габаритов и массы, чем при использовании обычных линз. Прожекторы, предназначенные для освещения открытых пространств, требуют обязательной защиты от пыли и влаги.

Для освещения железнодорожных и автомобильных развязок, перронов аэровокзалов, морских портов, бассейнов, футбольныхполей используются металлогалогенные прожекторы.

Прожектор состоит из источника света (лампы, дающей ненаправленный, или направленный под широким углом свет) и рефлектора и/или линзы, концентрирующих свет в нужном направлении. В качестве рефлектора обычно используется параболическое, либо гиперболическое (в случае использования совместно с линзой) зеркало.

Прожекторы применяются для освещения как внутри помещений, так и больших открытых пространств. Они предназначены для освещения стадионов, сцен, бассейнов и фасадов зданий. Мощность таких светильников подбирается в зависимости от площади и расчетной интенсивности освещения.

Принцип действия прожектора: в фокусе параболического зеркала помещается лампочка - на выходе получается хорошо сколлимированный пучок света. для большей эффективности лампочка прикрывается зеркалом с внешней стороны.

Hа картинке нарисован ход лучей в этой системе: красным – лучи, напрямую отраженные от параболического зеркала, синим – отраженные сначала от сферического зеркала, центр которoго совпадает с центром лампочки: такое зeркало точно возвращает луч тогда, откуда он пришел – но запускает в обратном направлении.

Вывод:

Радиус кривизны r вогнутого зеркала.

Цель: Измерение радиуса кривизны r вогнутого зеркала.

Приборы и материалы: вогнутое зеркало, источник света, линейка

Ход работы:

Маленький освещенный объект, помещенный в центр кривизны С вогнутого зеркала, посылает лучи света к зеркалу, которое затем отражает их обратно к точке С и образует перевернутое изображение рядом с объектом. Установите прибор и вогнутое зеркало, как показано на рисунке а. Необходимо слегка наклонить зеркало на его подставке так, чтобы пятно света оказалось на «экране» рядом с объектом.

Двигайте источник света по направлению к зеркалу (или от него), пока не образуется четкое перевернутое изображение рядом с объектом. Измерительной линейкой отмерьте расстояние от полюса Р зеркала до объекта, который теперь находится в точке С.

Запишите значение r в таблицу результатов. Повторите эксперимент, но на этот раз оставьте источник света неподвижным и двигайте зеркало на подставке, пока изображение снова точно не сфокусируется. Измерьте и запишите второе значение r. Подсчитайте среднее значение радиуса кривизны r.

3.5 Применение сферических, цилиндрических и параболических зеркал

С помощью выпуклого зеркала можно заглянуть за угол.

С помощью очень длинного вогнутого зеркала можно нагревать воду в трубке, расположенной в его фокусе.

С помощью системы из двух вогнутых зеркал на ветровое стекло машины можно выводить различные параметры. В своей работе, приоткрыв тайну кривых зеркал, я погрузился в волшебный мир.

Литература:

Учебники Физика – 11 кл. (раздел геометрическая оптика) В.А. Касьянов.

Справочник фельдшера, А. Шабанов, издательство «Медицина», Москва, 1976г.

Электронное пособие «Открытая физика 1.1» под редакцией профессора МФТИ С.М. Козела.

Справочник по физике, А.С. Енухович, Москва «Просвещение». 1978г.

Справочник по физике и технике, А.С. Енухович, Москва, «Просвещение», 1989г.

Ландсберг Г.С. Элементарный учебник физики. — 13-е изд. — М.: Физматлит, 2003. — Т. 3. Колебания и волны. Оптика. Атомная и ядерная физика. — С. 249-266. — 656 с.

Гершун А. Л.,. Электрический прожектор // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.

Прожектор в Большой советской энциклопедии

Карякин Н. А. Световые приборы прожекторного и проекторного типов, М.: 1966.

Трембач В. В. Световые приборы, М.: 1972.

Применение сферических зеркал http://kaf-fiz-1586.narod.ru/11bf/dop_uchebnik/curved_mirrors.htm

История возникновения зеркал http://www.klintsy.ru/music/istorija-vozniknovenija-zerkal_2538.html

История о сферическом зеркале http://inlavka.ru/ideas/history/183/

http://globalphysics.ru/physics/svet/250-vognutoe-zerkalo.html

http://f33.ucoz.ru/publ/11-1-0-122

http://zablugdeniyam-net.ru/fakty/vognutye-zerkala/

Просмотров работы: 2584