МАТЕМАТИКА И МУЗЫКА

V Международный конкурс научно-исследовательских и творческих работ учащихся
Старт в науке

МАТЕМАТИКА И МУЗЫКА

Дубровина М.В. 1
1ГБПОУ МО "Сергиево-Посадский колледж"
Александрова М.П. 1
1ГБПОУ МО "Сергиево-Посадский колледж"
Автор работы награжден дипломом победителя II степени
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение:

"Раздумывая об искусстве и науке, об их взаимных связях и противоречиях, я пришел к выводу, что математика и музыка находятся на крайних полюсах человеческого духа. Что этими двумя антиподами ограничивается и определяется вся творческая духовная деятельность человека и, что между ними размещается все, что человечество создало в области науки и искусства».

Г. Нейгауз.

Математика и музыка - два школьных предмета, два полюса человеческой культуры. Слушая музыку, мы попадаем в волшебный мир звуков. Решая задачи, погружаемся в строгое пространство чисел. И не задумываемся о том, что мир звуков и пространство чисел издавна соседствуют друг с другом.

Казалось бы, искусство - весьма отвлеченная от математики область. Однако связь математики и музыки обусловлена как исторически, так и внутренне, несмотря на то, что математика - самая абстрактная из наук, а музыка - наиболее отвлеченный вид искусства.

2) Историческая справка

2.1 Открытие Пифагора в области теории музыки

Пифагор считал, что гармония чисел сродни гармонии звуков и что оба этих занятия упорядочивают хаотичность мышления и дополняют друг друга. Он был не только философом, но и математиком, и теоретиком музыки. Родился Пифагор около 570 года до нашей эры на острове Самосее. Пифагор основал науку о гармонии сфер, утвердив ее, как точную науку. Известно, что пифагорейцы пользовались специальными мелодиями против ярости и гнева. Они проводили занятия математикой под музыку, так как заметили, что она благотворно влияет на интеллект. Он учился музыки в Египте и сделал ее предметом науки в Италии. Пифагор считал, что гармония чисел сродни гармонии звуков и что оба этих занятия упорядочивают хаотичность мышления и дополняют друг друга. Одним из достижений Пифагора и его последователей в математической теории музыки был разработанный ими «Пифагоров строй». Новая технология использовалась для настройки популярного в то время инструмента – лиры. Тем не менее, «Пифагоров строй» был несовершенен, как и древнегреческая арифметика. Расстояние между соседними звуками «Пифагорова строя» неодинаковые. Он – неравномерный. Чтобы сыграть мелодию, от какой- либо другой ноты, лиру каждый раз нужно перенастраивать. Исследованию музыки посвящали свои работы многие величайшие математики, такие как: Рене Декарт ( его первый труд - “CompendiumMusicae” в переводе “Трактат о музыке” ) , Готфрид Лейбниц, Христиан Гольдбах, ЖанД’Аламбер, Даниил Бернулли и другие.

Для воплощения своего открытия Пифагор использовал монохорд – полуинструмент, полуприбор. Под струной на верхней крышке ученый начертил шкалу, с помощью которой можно было делить струну на части. Было проделано много опытов, в результате которых Пифагор описал математически звучание натянутой струны.

2.2 Что определяет консонанс

Долгое время не было единого мнения о том, что определяет приятное для слуха звучание струны (в музыке это явление называют консонансом). Ясность в этот вопрос внес Архит (IV в. до н.э.), который сущность высоты тона видел не в длине струны и не в силе натяжения, а в скорости ее движения, т.е. скорости ударения струны по частичкам воздуха.

Сегодня эта "скорость движения" носит название частоты колебания струны. Архит установил, что высота тона (или частота колебания струны) обратно пропорциональна ее длине.

2.3 Законы пифагорейской музыки

В основе этой музыкальной системы были два закона, которые носят имена двух великих ученых - Пифагора и Архита. Вот эти законы:

1) Две звучащие струны определяют консонанс, если их длины относятся как целые числа, образующие треугольное число 10=1+2+3+4, т.е. как 1:2, 2:3, 3:4. Причем, чем меньше число n в отношении n:(n+1) (n=1,2,3), тем созвучнее получающийся интервал.

2) Частота колебания w звучащей струны обратно пропорциональна ее длине:

w = a : l ,

где а - коэффициент, характеризующий физические свойства струны.

3) Тоника – основной наиболее устойчивый тон в гамме. С него начинается данная музыкальная система.

Лад – приятная для слуха взаимосвязь музыкальных звуков, определяемая зависимостью неустойчивых звуков от устойчивых и имеющая определенный характер звучания.

Музыкальный строй – математическое выражение системы звуковысотных соотношений – лада.

3. Математическое описание построения музыкальной гаммы:

1. Основой музыкальной шкалы–гаммы пифагорейцев был интервал – октава. Она является консонансом, повторяющим верхний звук. Для построения музыкальной гаммы пифагорейцам требовалось разделить октаву на красиво звучащие части. Так как они верили в совершенные пропорции, то связали устройство гаммы со средними величинами: арифметическим, гармоническим.

Среднее арифметическое частот колебаний тоники (w1 ) и ее октавного повторения (w2 ) помогает найти совершенный консонанс квинту.

Т.к. w2 = 2w1 , то w3 = (w1 + w2 ) : 2 = 3w1 : 2 или w3 : w1 = 3 : 2 (w3 – частота колебаний квинты).

Длина струны l3 , соответствующая квинте, по второму закону Пифагора-Архита будет средним гармоническим длин струн тоники l1 и ее октавного повторения l2 .

Т.к. l2 = l1 : 2, то l3 = 2 l1 l2 : (l1 + l2 ) = 2 l1 l1 : 2 : (l1 + l1 : 2) = l1 2 : ((2 l1 + l1 ) : 2) = 2 l1 2 : :3 l1 = 2 l1 : 3; или l3 : l1 = 2 : 3.

Взяв далее среднее гармоническое частот основного тона w1 и октавы w2 , получим w4 = = 2w1 w2 : (w1 + w2 ) = 2w1 2w1 : ( w1 + 2w1 ) = 4w1 2 : 3w1 = 4w1 : 3.

Значит w4 : w1 = 4 : 3. В результате находим еще один совершенный консонанс – кварту.

Определим, как связаны длины струн найденных частот (l4 и l1 ):

l4 = ( l1 + l2 ) : 2 = ( l1 + l1 : 2 ) : 2 = ( 2 l1 + l1 ) : 2 : 2 = 3 l1 : 4; l4 : l1 = 3 : 4.

Это значит, что длины струн l1 , l2 и l4 связаны между собой средним арифметическим.

Итак, частота колебаний квинты является средним арифметическим частот колебаний основного тона w1 и октавы w2 , а частота колебаний кварты - средним гармоническим w1 и w2 . Или иначе: длина струны квинты есть среднее гармоническое длин струн основного тона l1 и октавы l2 , а длина струны кварты – среднее арифметическое l1 и l2 . Это лишь незначительная часть тех прекрасных пропорций, которые были воплощены в пифагорейской музыкальной гамме.

2. У древних греков существовал и другой способ построения музыкальной гаммы, кроме описанного выше. Он был более простым и удобным и до сих пор применяется при настройке музыкальных инструментов.

Оказывается, гамму можно построить, пользуясь лишь совершенными консонансами - квинтой и октавой. Суть этого метода состоит в том, что от исходящего звука, например "до" (3/2)0 = 1, мы движемся по квартам вверх и вниз и полученные звуки собираем в одну октаву. И тогда получаем: (3/2)1 = 3/2 - соль, (3/2)2 :2 = 9/8 - ре, (3/2)3 :2 =27/16 - ля, (3/2)4 :22 = 81/64 - ми, (3/2)5 : 22 = 243/128 - си, (3/2)-1 :2 =4/3 - фа.

3. Идея совершенства окружающего мира владела умами ученых и в последующие эпохи. В первой половине XVII в. И.Кеплер установил семь основных гармонических интервалов: октаву - 2/1, большую сексту - 5/3, малую сексту - 8/5, чистую квинту - 3/2, чистую кварту - 4/3, большую терцию - 5/4 и малую терцию - 6/5.

С помощью этих интервалов он выводит весь звукоряд как мажорного, так и минорного наклонения. После долгих поисков гармоничных отношений "на небе", проделав огромную вычислительную работу, И.Кеплер установил, что отношения экстремальных углов скоростей для некоторых планет близки к гармоническим: Марс - 3/2, Юпитер - 6/5, Сатурн - 5/4. "Солнце гармонии засияло во всем блеске. Небесное движение есть не что иное, как ни на миг не прекращающаяся музыка", - так думал ученый. Здесь Кеплера не оставляет буйная фантазия. Небольшие расхождения в расчетах и наблюдениях он объясняет тем, что небесный секстет должен звучать одинаково согласно и в мажоре, и в миноре, а для этого ему необходимо иметь возможность перестраивать свои инструменты.

XVIII век открыл новые страницы в истории музыки. Около 1700 года немецкий органист А.Веркмайстер осуществил гениальное решение: отказался от совершенных и несовершенных консонансов пифагорейской гаммы... Сохранив октаву, он разделил ее на 12 равных частей. Пифагорова комма исчезла. Новый музыкальный строй позволил выполнять транспонирование мелодии. С введением этого строя в музыке восторжествовала темперация (от лат.соразмерность). В чем же состояло математическое описание равномерно-темперированного строя?

Вначале было дано физическое определение звука. Музыкальный тон, как уже говорилось, есть колебательный процесс с некоторой фиксированной частотой. Известно, что человеческое ухо способно воспринимать колебания частоты от 16 до 20000 гц. Если рассмотреть таблицу для среднего, наиболее употребительного участка частот в диапазоне первой октавы фортепиано, то увидим следующие частоты:

Эти частоты выбраны не случайно, ведь в основе устройства музыкальной гаммы лежат определенные закономерности. Шкала полностью определяется, если известно число ее ступеней между частотой w и частотой 2w. Для построения гаммы гораздо удобнее пользоваться, оказывается, логарифмами соответствующих частот: log2 w0 , log2 w1 ...log2 wm . Октава (w0 ,2w0 ) при этом перейдет в промежуток от log2 w0 до log2 w0 = log2 w0 +1, т.е. в промежуток длиной 1. Геометрическая прогрессия w0 ,w1 ,..,wm будет соответствовать арифметической log2 w0 , , , .., или , , , .., . Разность этой прогрессии равна . Таким образом, на оси логарифмов шкала будет состоять из точек А, А+1/m; А+2/m;...; А+1, где А - величина . На сколько же частей должна быть разделена музыкальная шкала, чему равно m? Анализ многих традиционных примеров народной музыки показал, что чаще всего в ней встречаются интервалы, выражаемые с помощью отношений частот: 2 (октава), 3/2 (квинта), 5/4 (терция), 4/3 (кварта), 5/3 (секста), 9/8 (секунда), 15/8 (септима). Эти и другие выводы показали, что музыкальная шкала должна быть разделена на 12 частей. Найдем теперь соответствующие значения логарифмов по основанию двух приведенных выше отношений. На рисунке шкала разделена на 12 равных отрезков. Здесь мы видим указанные частоты и их логарифмы. Построенная двенадцатиступенная шкала реализует перечисленные ранее условия. Отношение соседних частот равномерно-темперированного строя постоянно и равно .

Органы, настроенные А. Веркмайстером, зазвучали в равномерно-темперированном строе. Преимущества нового строя были бесспорными. Строй носил замкнутый характер и состоял из интервалов, вполне приемлемых для музыкального слуха как в мелодическом, так и в гармоническом отношении. В нем совершенно спокойно можно было осуществлять переходы из тональности в тональность. И.С.Бах доказал жизнеспособность новой музыкальной системы, написав "Хорошо темперированный клавир", состоящий из 12 мажорных и 12 минорных произведений. Авторитет великого композитора примирил споры математиков и музыкантов, выступавших "за" или "против" нового музыкального строя.

В музыке ХХ века было много разных музыкальных направлений, основанных на рациональных математических принципах. Те же нововенцы активно использовали приемы, описанные при помощи магического квадрата, этот символ даже был высечен на могиле Веберна.

С развитием компьютеров и электронной музыки математический компонент в музыке только усилился. Можно назвать многих композиторов, двигавшихся в этом направлении, назовем только некоторых. При помощи электроники создавал многие свои сочинения выдающийся новатор и продолжатель идей ШёнбергаКарлхайнцШтокхаузен.

Уже в нашем веке появлялись попытки усовершенствования равномерно-темперированного строя. Не надо забывать, что в его основу положены частоты, выражающиеся приближенными значениями чисел. А приближенное значение иррационального числа всегда определяется с заданной степенью точности. В музее музыкальной культуры можно увидеть музыкальные инструменты, в которых число ступеней в октаве значительно больше двенадцати. Были попытки создания инструментов с числом ступеней в октаве 24, 48, 53 для того, чтобы получить интервалы, наиболее близкие к чистым. В музыкальной практике, однако, такие инструменты не использовались.

5. Заключение

Раздумывая об искусстве и науке, об их взаимосвязях и противоречиях, я пришел к выводу, что математика и музыка находятся на крайних полюсах человеческого духа, что этими двумя антиподами ограничивается и определяется вся творческая и духовная деятельность человека. Что между ними размещается все, что человечество создало в области наук и искусства» – писал Г. Нейгауз.

Итак, мы можем смело сделать вывод, что математика и музыка – два полюса человеческой культуры, два школьных предмета, две системы мышления, тесно связанные между собой: музыка делает человека более уверенным и эмоциональным, обогащает умственно, способствует духовному развитию, а математика в свою очередь - это инструмент познания, воплощающий порядок и логику. А закончить данное исследование я хочу словами великого математика Лейбница: «Музыка есть таинственная арифметика души; она вычисляет, сама того не сознавая».

Список литературы:

1. «Элементарная теория музыки» В.Вахромеев.

2. Р.Глиэр. О профессии композитора и воспитании молодежи. «Советская музыка», 1954, №8

3. Электронная энциклопедия.

Просмотров работы: 341