ВВЕДЕНИЕ
Ознакомившись с современной литературой [1-3], мы поняли, что композиционные материалы имеют широкое применение в авиационной промышленности. Режим эксплуатации самолетов подразумевает их быструю диагностику во время стоянки. Из-за особой структуры композиционных материалов, тепловизионный способ их диагностики наиболее приемлем.
Тепловизионная диагностика композиционных материалов – это сложная техническая задача, требующая разработки специального программного обеспечения, по сложности сопоставимого с УЗИ и томографией [4-5]. С другой стороны физические принципы распространения тепла в материалах и в измерении тепловых полей одинаковы, как в композиционных, так и в простых материалах. Поэтому для экспериментов мы самостоятельно изготовили композиционный материал из кусков металлической сетки в объеме воска, чтобы убедиться, что с помощью тепловизора возможно диагностировать внутренние дефекты материалов, и чтобы определить чувствительность подобного способа.
Цель исследования оценить возможности диагностического тепловизора для определения дефектов композитных материалов.
Задачи исследования:
1) Рассмотреть композиционные материалы, используемые в авиационной и космической промышленности и их свойства.
2) Рассмотреть технологию производства композиционных материалов.
3) Провести эксперимент по бесконтактной диагностике этих материалов.
Объект исследования композиционные материалы.
Предмет исследования тепловизионная диагностика дефектов композиционных материалов.
Гипотеза приступая к работе, мы предположили, что, зная состав композиционного материала и технологию его производства, можно диагностировать существующий композиционный материал на наличие/отсутствие внутренних (скрытых) дефектов с помощью простого диагностического тепловизора.
ПРАКТИЧЕСКАЯ ЧАСТЬ
ТЕМА: Проверка видимости тепловизором дефектов композиционного материала (металлической сетки залитой воском)
ЦЕЛЬ: Увидеть повреждения на заготовке из металлической сетки и воска.
Оборудование и материалы: (1) тепловизор TESTO-871, (2) нагревающая лампа галогеновый прожектор мощностью 500 Вт, (3) металлическая сетка из сита, (4) воск из свечей.
Ход работы:
Металлическая сетка была залита воском и разрезана.
Кроме того, в нескольких местах сетку просверлили.
Поврежденную таким образом сетку залили более толстым слоем воска и получили образец композитного материала для испытаний.
Прожектор, используемый для бесконтактного и достаточно равномерного нагрева образца композитного материала.
Металлическо-восковой композит во время нагрева прожектором.
Внутренняя структура композита, проявившаяся по неоднородности
его теплового поля на 7 минуте нагрева прожектором.
На термограмме синий и красный маркеры с перекрестьем указывает на точки с минимальной и максимальной температурами в кадре, соответственно, а белый маркер на температуру в центре кадра. Внизу слева дано время съемки, а справа впечатывается шкала-палитра с выбранным коэффициентом излучения материала.
Отчетливо видны треугольные куски металлической сетки и параллельные промежутки между ними. Вследствие того, что нагрев образца прожектором был больше в центральной части (вблизи лампы), а на тепловизионной картине различные температуры визуализированы ограниченным набором цветов палитры, в кадре тепловизора оказались видны только центральные части кусков сеток. Продолжение этих частей сеток (их периферия) потерялось в «зеленой» области палитры с более низкими температурами.
Данный результат говорит о том, что с помощью тепловизора можно достоверно диагностировать внутренние дефекты композитных материалов, но размер диагностируемой области не может превышать размер области равномерного нагрева. С другой стороны, если нужно увидеть дефект в малой заданной области, то достаточно нагревать только ее, при этом она будет видна, а соседние дефекты не будут мешать в процессе визуализации.
Более детально (покадрово) процесс тепловизионного выявления внутренней структуры композитного материала показан в Приложении 5.
Образец композитного материала (после выявления его внутренней структуры) положили остывать на холодную керамическую плитку пола. Несмотря на то, что теплопроводности металлической сетки и объема воска различны, благодаря тому, что сетка была тонкой, чем слой воска, решающий вклад во время остывания области оказывала неравномерность толщины слоя воска. Чем больше было толщина воска в данной области образца, тем медленнее она остывала, т.е. тем выше была ее температура в заданный момент наблюдения, по сравнению с более тонкими областями воска.
Этот факт позволил по неоднородности теплового поля образца во время остывания судить о профиле его толщины. Причем визуальные и тепловизионные картины хорошо соответствовали друг другу. Покадрово термограммы остывания образца на полу даны в Приложении 6.
Неоднородность теплового поля образца на 1-й минуте остывания, связанная с неоднородностью толщины слоя воска. «Зеленые дыры» в тепловой картине соответствуют местам проплавления воска до сетки при его прогреве прожектором. Красные области самые толстые слои воска.
После того, как образец остыл до комнатной температуры (точнее температуры пола), его реши испытать воздействию пониженных температур. Для этого вынесли его на улицу (температура около 15 С) и положили горизонтально на предварительно выровненный слой свежего снега.
Термограммы остывания композита на снегу оказалась чрезвычайно неоднородной и зависящей главным образом от точек теплового контакта образца и слоя снега. По данной термограмме невозможно сделать вывод о внутреннем строении композитного образца или его толщине, но зато хорошо видны места его теплового контакта с нижележащим слоем, что тоже может быть важно в диагностике дефектов, например в обнаружении отслоения композита от нижележащего слоя (вследствие разрушения клеевой основы или деформации основы). Термограммы остывания образца на снегу даны в Приложении 7.
Термограмма 1-й минуты остывания композита, лежащего на слое снега. Видна сильная неоднородность теплового поля, которая никак не связана с внутренним строением материала и его толщиной, а определяется точками его контакта с более холодным снегом.
Полученный результат говорит о том, что с помощью тепловизора можно определять не только внутреннее строение композита и профиль его толщины, но и качество его контакта с нижележащим основанием.
ЗАКЛЮЧЕНИЕ
Современная авиационная промышленность не мыслима без композиционных материалов и требуется постоянная диагностика дефектов частей летательных аппаратов без их разборки
Экспериментальные исследования с образцом из композитного материалы (части тонкой металлической сетки, залитые в объеме воска) дали неожиданно много результатов.
Во-первых, при бесконтактном нагреве образца была уверенно выявлена его внутренняя структура (на термограммых были видны части сетки) в области однородного нагрева. Это говорит о том, что тепловидение в сочетании с однородным нагревом позволяет исследовать внутреннюю структуру композитных материалов, в том числе и их дефекты.
Во-вторых, при остывании образца, лежащего на ровной поверхности (образец внизу тоже был ровным, т.к. его получали при плавлении воска на ровной поверхности), хорошо появилась неоднородность его толщины, т.к. участки с большей толщиной слоя медленнее остывали и из-за этого имели большую температуру. Это говорит о том, что техника тепловидения позволяет выявить неоднородность толщины композитного материала, при условии, что тепловой контакт его противоположной стороны с окружающей средой однородный.
В-третьих, при остывании образца, лежащего на неровной поверхности, неоднородный контакт противолежащей стороны образца тут же был выявлен тепловизором по неоднородности теплового поля. Это говорит о том, что тепловидение позволяет выявлять дефекты контакта композитного материала с нижележащим слоем.
Таким образом, мы опытным путем установили, что с помощью недорогого диагностического тепловизора (на примере Testo 871, 70тыс. руб.) можно определять не только внутреннее строение композита и профиль его толщины, но и качество его контакта с нижележащим основанием, а также оценивать геометрические размеры дефекта (его толщину или ширину).
Данная возможность будет удобна для первичного обнаружения дефектов авиационной техники, поскольку техника тепловидения позволяет сразу получать изображения больших площадей поверхности (порядка 1м2), в отличие от токовихревых и ультразвуковых методов [6, 7], работающих локально, от точки к точке, и поэтому медленных в режиме поиска, но позволяющих проводить точные измерения. Таким образом, для сокращения времени диагностических работ (ускорения поиска дефектов) и повышения их качества (100 % охват поверхности) целесообразно использовать сначала термографическую систему, а затем на найденных дефектах точные классические способы.
Исследование проведено в рамках серии совместных проектных работ Физико-математической школы Тюменской области и Открытого акционерного общество «ЮТэйр-Инжиниринг», направленных на повышение скорости и точности неразрушающей дефектоскопии деталей и узлов летной техники (Приложения 1-4). Научно-техническое сотрудничество с ведущей российской авиационно-технической базой вертолетов запланировано на длительной основе с учетом реальных проблем эксплуатации винтокрылой техники в условиях Западной Сибири. Будут использованы уникальные стенды для испытаний агрегатов и их узлов «ЮТэйр-Инжиниринг» и исследовательское оборудование нашей школы.
Авиаремонтный комплекс АО «ЮТэйр-Инжиниринг» является единственным в России предприятием, предоставляющим полный комплекс услуг по ремонту и техническому обслуживанию вертолетов отечественного и зарубежного производства: от полной разборки вертолета и комплектующих до сборки, покраски, наземных и летных испытаний.. Специалисты предприятия ежегодно выполняют техническое обслуживание свыше 300 вертолетов всей линейки семейства Миль, Ка-32Т, самолетов АН-2, их систем и агрегатов, а также вертолетов зарубежного производства: Airbus Helicopters, Robinson R-44, AW139. Мировой лидер по техобслуживанию вертолётов ОКБ Миля.
Приложение 1.
Письмо директору «ЮТэйр-Инжиниринг»
Генеральному директору
Акционерного общества «ЮТэйр-Инжиниринг»
Фараджаеву Рашиду Гусейновичу
директора государственного автономного общеобразовательного учреждения
Тюменской области «Физико-математическая школа»
Фомичевой Натальи Александровны
Уважаемый Рашид Гусейнович,
Просим Вас содействовать в проведение проектно-исследовательских работ, направленных на повышение скорости и точности неразрушающей дефектоскопии деталей и узлов летной техники, а также повышения безопасности полетов в условиях Западной Сибири, проводимых учениками нашей школы, а именно разрешить:
1) Сопоставить результаты нашей термографической системы и метрологического оборудования вашей организации путем проведения совместных дефектоскопических исследований на реальных объектах летательных аппаратах и их частях.
2) Сопоставить результаты классических макро-методов измерения твердости на вашем оборудовании и с помощью нашего метода на нано-масштабе на реальных деталях летательных аппаратов.
3) Сопоставить результаты, даваемые по износу двигателей классическим рентгеновским анализатором вашего метрологического центра и нашим наномикроскопом, для чего провести совместные исследования проб масла из двигателей и узлов трансмиссии вертолетов.
4) Измерить тепловые поля от вертолетов на разном расстоянии и в разных погодных условиях, чтобы понять пределы обнаружения в тепловизор вертолета, летящего на встречном курсе.
5) Измерить тепловые поля от источников инфракрасного излучения в условиях снежной пелены, поднятой вертолетом, чтобы оценить возможность ориентировки пилота вертолета в тепловизор по тепловым наземным источникам при посадке на заснеженных площадках.
6) При выполнении проектов по пп.1,3-5 на территории предприятия присутствие руководителя проектов со стороны ФМШ к.ф.-м.н. Тарасова Олега Александровича и учеников ФМШ.
Полученные нами результаты, как на территории предприятия, так и в стенах областной школы будут оформлены в виде отчетов и переданы Вам.
При защите школьных проектов будут применяться принципы конфиденциальности информации и научной этики. В частности, не будет раскрываться информация о конкретных объектах исследования. При подготовке материалов к защите будет согласовываться их содержание на предмет разрешенной к раскрытию информации с назначенным Вами лицом.
Приложение 2.
Ответное письмо директора «ЮТэйр-Инжиниринг»
Приложение 3
Пропуск автора проекта на территорию предприятия
Приложение 4
Автор проекта во время анализа термограмм
и посещения АО «ЮТэйр-Инжиниринг»
Делегация ГАОУ ТО ФМШ перед входом на предприятие
в составе: Владимир Редченко, Олег Тарасов и Дарья Учанова.
Приложение 5.
Процесс тепловизионного «проявления» внутренней структуры композитного материала (треугольных кусков металлической сетки в объеме воска) в ходе бесконтактного нагрева композита прожектором.
Приложение 6.
Процесс тепловизионного «проявления» неоднородности толщины композитного материала (разной толщины слоя воска) в ходе остывания композита, положенного на холодную керамическую плитку пола.
Приложение 7.
Термограммы в процессе остывания композита, вынесенного из теплого помещения на улицу (температура около 15 ) и положенного на горизонтальный выровненный слой снега.
Список литературы
1. Виды и применение композитных материалов (24.01.2018). https://pcgroup.ru/blog/vidy-i-primenenie-kompozitnyh-materialov/
2. «Композитные материалы — это будущее авиации». Глава компании «Аэрокомпозит» Анатолий Гайданский — в интервью «Ъ FM» (24.06.2017). https://www.kommersant.ru/doc/3366063
3. А.В. Зимбацкий, Ю.В. Стасюк. Применение композиционных материалов в современном авиастроении, контроль за их состоянием в эксплуатации. Научный Вестник МГТУ ГА № 208. http://avia.mstuca.ru/jour/article/download/333/259
4. Морозов Г.А. Развитие методов неразрушающего контроля в авиации. — Контроль. Диагностика, № 7, 2002, с. 3-8.
5. Вавилов В.П., Климов А.Г., Тепловизоры и их применения, М.: Интел универсал. 2002. - 88с.
6. Неразрушающий контроль: Справочник: В 7 т. Под общ. ред. В.В. Клюева. Т.5: В 2 кн. Кн. 1: Тепловой контроль./В.П. Вавилов. М.: Машиностроение, 2004. - 679 с.
7. Методы неразрушающего контроля. Неразрушающие методы контроля материалов и изделий [Электронный ресурс]: электрон. учеб. пособие / Н. В. Кашубский, А. А. Сельский, А. Ю. Смолин и др. – Электрон. дан. (3 Мб). – Красноярск: ИПК СФУ, 2009.