Необычные способы умножения

VI Международный конкурс научно-исследовательских и творческих работ учащихся
Старт в науке

Необычные способы умножения

Дураев  А.В. 1
1МБОУ "Намская СОШ №2"
Новгородова Л.Г. 1
1МБОУ "Намская СОШ №2"
Автор работы награжден дипломом победителя III степени
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

Однажды мама показала мне интересное видео, в котором один профессор показывал метод умножения двузначных чисел. Так как мы еще не умножаем двузначные числа, мне было интересно посмотреть, как это происходит. Тем более, что многие дети не учат таблицу умножения и поэтому возникают трудности в вычислениях.

Чтобы привлечь внимание учащихся к математике и ответить на вопрос «Надо ли знать таблицу умножения?» я выбрал тему «Необычные способы умножения».

Гипотеза: Надо ли знать таблицу умножения современному ученику?

В нашем современном мире постоянное применение вычислительной техники приводит к тому, что учащиеся затрудняются производить какие-либо расчеты. Знание упрощенных приемов вычислений дает возможность не только быстро производить простые расчеты в уме, но и контролировать, оценивать, находить и исправлять ошибки в результате механизированных вычислений. Кроме того, освоение вычислительных навыков развивает память, повышает уровень математической культуры мышления, помогает полноценно усваивать предметы физико-математического цикла

В разное время разные народы владели разными способами умножения натуральных чисел. Но в настоящее время все народы применяют один способ умножения «столбиком». У меня возникли вопросы:

Почему люди отказались от старых способов умножения в пользу современного? Имеют ли забытые способы умножения право на существование в наше время?

Цель работы: выявить наиболее удобный способ умножения.

Задачи:

Найти необычные способы умножения;

Научиться их применять;

Провести эксперимент и найти самый удобный и быстрый способ.

II. Необычные способы умножения

2.1. Немного истории

Те способы вычислений, которыми мы пользуемся сейчас, не всегда были так просты и удобны. В старину пользовались более громоздкими и медленными приемами. И если бы школьник 21 века мог перенестись на пять веков назад, он поразил бы наших предков быстротой и безошибочностью своих вычислений. Молва о нем облетела бы окрестные школы и монастыри, затмив славу искуснейших счетчиков той эпохи, и со всех сторон приезжали бы учиться у нового великого мастера.

Особенно трудны в старину были действия умножения и деления. Тогда не существовало одного выработанного практикой приема для каждого действия. Напротив, в ходу была одновременно чуть не дюжина различных способов умножения и деления - приемы один другого запутаннее, запомнить которые не в силах был человек средних способностей. Каждый учитель счетного дела держался своего излюбленного приема, каждый «магистр деления» (были такие специалисты) восхвалял собственный способ выполнения этого действия.

В книге В. Беллюстина «Как постепенно дошли люди до настоящей арифметики» изложено 27 способов умножения, причем автор замечает: «весьма возможно, что есть и еще способы, скрытые в тайниках книгохранилищ, разбросанные в многочисленных, главным образом, рукописных сборниках».

И все эти приемы умножения - «шахматный или органчиком», «загибанием», «крестиком», «решеткой», «задом наперед», «алмазом» и прочие соперничали друг с другом и усваивались с большим трудом.

Давайте рассмотрим наиболее интересные и простые способы умножения.

2.2. Умножение на пальцах.

Древнерусский способ умножения на пальцах является одним из наиболее употребительных методов, которым успешно пользовались на протяжении многих столетий российские купцы. Они научились умножать на пальцах однозначные числа от 6 до 9. При этом достаточно было владеть начальными навыками пальцевого счета “единицами”, “парами”, “тройками”, “четверками”, “пятерками” и “десятками”. Пальцы рук здесь служили вспомогательным вычислительным устройством.

Для этого на одной руке вытягивали столько пальцев, на сколько первый множитель превосходит число 5, а на второй делали то же самое для второго множителя. Остальные пальцы загибали. Потом бралось число (суммарное) вытянутых пальцев и умножалось на 10, далее перемножались числа, показывавшие, сколько загнуто пальцев на руках, а результаты складывались.

Например, умножим 7 на 8. В рассмотренном примере будет загнуто 2 и 3 пальца. Если сложить количества загнутых пальцев (2+3=5) и перемножить количества не загнутых (2•3=6), то получатся соответственно числа десятков и единиц искомого произведения 56 . Так можно вычислять произведение любых однозначных чисел, больше 5.

2.3. Умножение на 9.

Умножение для числа 9 - 9·1, 9·2 ... 9·10 - легче выветривается из памяти и труднее пересчитывается вручную методом сложения, однако именно для числа 9 умножение легко воспроизводится "на пальцах". Растопырьте пальцы на обеих руках и поверните руки ладонями от себя. Мысленно присвойте пальцам последовательно числа от 1 до 10, начиная с мизинца левой руки и заканчивая мизинцем правой руки (это изображено на рисунке).

Допустим, хотим умножить 9 на 6. Загибаем палец с номером, равным числу, на которое мы будем умножать девятку. В нашем примере нужно загнуть палец с номером 6. Количество пальцев слева от загнутого пальца показывает нам количество десятков в ответе, количество пальцев справа - количество единиц. Слева у нас 5 пальцев не загнуто, справа - 4 пальца. Таким образом, 9·6=54. Ниже на рисунке детально показан весь принцип "вычисления".

По ходу дела скажем, что в качестве "счетной машинки" не обязательно могут выступать пальцы рук. Возьмите, к примеру, 10 клеточек в тетради. Зачеркиваем 8-ю клеточку. Слева осталось 7 клеточек, справа - 2 клеточки. Значит 9·8=72. Все очень просто.

                   

7 клеток 2 клетки.

2.4. Умножение чисел методом «ревность» или «решетка».

Данный способ носит романтическое название «ревность», или «решётчатое умножение».

Сначала рисуется прямоугольник, разделённый на квадраты, причём размеры сторон прямоугольника соответствуют числу десятичных знаков у множимого и множителя. Затем квадратные клетки, делятся по диагонали, и «…получается картинка, похожая на решётчатые ставни-жалюзи, - пишет Пачоли. – Такие ставни вешались на окна венецианских домов, мешая уличным прохожим видеть, сидящих у окон дам и монахинь».

Умножим этим способом 347 на 29. Начертим таблицу, запишем над ней число 347, а справа число 29.

В каждую строчку запишем произведение цифр, стоящих над этой клеткой и справа от нее, при этом цифру десятков произведения напишем над косой чертой, а цифру единиц – под ней. Теперь складываем числа в каждой косой полосе, выполняя эту операцию, справа налево. Если сумма окажется меньше 10, то ее пишем под нижней цифрой полосы. Если же она окажется больше, чем 10, то пишем только цифру единиц суммы, а цифру десятков прибавляем к следующей сумме. В результате получаем искомое произведение 10063.

3 4 7

6

8

1

4

2

7

3

6

6

3

2

 

10

9

0 6 3

2.5. Умножение графическим методом (линейным, китайским)

Пе ремножим два двузначных числа: 15*23

Шаг 1. первое число 15:

Рисуем первую цифру – одной линией.

Рисуем вторую цифру – пятью линиями.

Шаг 2. второе число 23:

Рисуем первую цифру – двумя линиями.

Рисуем вторую цифру – тремя линиями.

Шаг 3. Подсчитываем количество точек в группах.

Шаг 4. Результат – 345

2.6. Новый способ умножения.

Интересен новый способ умножения, о котором недавно появились сообщения. Изобретатель новой системы устного счёта предлагает следующее:

к примеру, умножим число 97 на 88 .

З аписываем: 97 * 88 =

(100-3)*(100-12)= 8536

85 36

Вначале от 100 отнимаем разность первого множителя от 100, это число 3. То же самое делаем со вторым множителем. Данные разности умножаем. Дальше от множителя 97 отнимаем 12 или от второго множителя 88 отнимаем 3, в обоих случаях получается 85. Потом остается умножить из двух скобок 3 на 12, получится 36. Получаем ответ 8536.

Попробовав разные случаи умножения двузначных чисел, пришли к выводу, что удобно умножать числа, когда можно быстро переумножить числа в скобках.

Проведем эксперимент

Изучив разные способы умножения, я решил провести эксперимент и выяснить какой из них удобнее и быстрее решается. С помощью секундомера установим, сколько времени затрачивается на решение примера, каждым рассмотренным способом.

Например, 97* 84

Сравним результаты:

Умножение способом «Ревность» (метод решетки) – 48 сек.

Умножение графическим методом (линейным, китайским) – 1мин 12 сек

Новый способ – 30 сек.

В столбик – 1 мин 18 сек.

Вывод:

Графический методы удобны для использования тем, кто никак не может выучить таблицу умножения!

«Метод решетки», ничем не уступает современному способу умножения столбиком. И я думаю, он стал бы хорошим помощником школьникам при умножении натуральных чисел. Но здесь надо хорошо знать таблицу умножения.

Самое меньшее время у меня заняло умножение новым способом.

Умножение в столбик заняло больше времени, так как я еще хорошо не научился умножать данным способом.

Заключение

Работая над этой темой, я узнал, что существует порядка 30 различных, забавных и интересных способов умножения. Некоторыми в различных странах пользуются до сих пор. Я выбрал для себя некоторые интересные способы. Но не все способы удобны в использовании, особенно при умножении многозначных чисел.

Научившись считать всеми представленными способами, я пришел к выводу: что самые простые способы это те, которые мы изучаем в школе, может быть они для нас более привычны.

Из всех найденных мною необычных способов счета более интересным показался способ «решетчатого умножения или ревность». Я показал его своим одноклассникам, и он им тоже очень понравился.

Заинтересовал меня новый способ умножения, но им можно пользоваться не во всех случаях.

Я думаю, что и наш способ умножения в столбик не является совершенным и можно придумать еще более быстрые и более надежные способы.

В общем, таблицу умножения все-таки знать нужно!

Использованная литература:

Депман И. «Рассказы о математике». – Ленинград.: Просвещение, 1954. – 140 с.

Корнеев А.А.  Феномен русского умножения. История. http://numbernautics.ru/

Олехник С. Н., Нестеренко Ю. В., Потапов М. К. «Старинные занимательные задачи». – М.: Наука. Главная редакция физико-математической литературы, 1985. – 160 с.

Перельман Я.И. Быстрый счет. Тридцать простых приемов устного счета. Л., 1941 — 12 с.

Перельман Я.И. Занимательная арифметика. М.Русанова,1994--205с.

Энциклопедия «Я познаю мир. Математика». – М.: Астрель Ермак, 2004.

Энциклопедия для детей. «Математика». – М.: Аванта +, 2003. – 688 с.

Просмотров работы: 4219