Необычные геометрические фигуры

VII Международный конкурс научно-исследовательских и творческих работ учащихся
Старт в науке

Необычные геометрические фигуры

Ульянов А.Е. 1
1МАОУ "СОШ №12"
Мурзина Т.А. 1
1МАОУ "СОШ №12"
Автор работы награжден дипломом победителя II степени
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

С самого первого класса на уроках математики мы стали знакомиться с различными геометрическими фигурами. Меня это очень заинтересовало. Рассматривая предметы я заметил, что многие из них не похожи на фигуры, изучаемые в школе.

Это мне показалось очень интересным, и я решил исследовать тему: «Необычные геометрические фигуры». В данной работе, я решил заняться изучением и исследованием геометрических фигур, в частности листа Мебиуса.

В данной работе расскажу о тех геометрических фигурах, которые мы не изучаем на уроках геометрии в школе, но именно они окружают нас в действительности, в архитектуре, в компьютерных играх и головоломках.

Цель данной работы: выявить необычные геометрические фигуры, используемые в современной миреи выяснить их происхождение и применение.

Задачи работы:

Выделить необычные геометрические фигуры.

Проанализировать основные особенности использования необычных геометрических фигур в окружающем нас мире

Методы исследования:

- изучение литературы по данному вопросу

- наблюдение в повседневной жизни.

Гипотеза: в процессе работы над проектом я хочу уточнить, нужны ли знания о необычных геометрических фигурах в повседневной жизни.

Основная часть

1.Теоритическая часть

Мы привыкли к традиционным формам евклидовой геометрии, знакомой нам уже 23 века: линии, прямоугольники, окружности, многоугольники на плоскости и т.д. И хотя это единственный вид геометрии, с которым знакомы многие люди, евклидова геометрия – всего лишь один из примеров существующих геометрий. Природа обычно не выражает себя в симметричной или правильной форме, а евклидова геометрия не располагает необходимыми инструментами, чтобы изучать ее феномены. Например, облако может походить на сферу, но не является ею, некоторые горы и холмы напоминают конусы, но это не так, а реки и беговые линии далеки от прямых линий. Тем не менее в творениях природы скрыт незримый порядок, и тех, кто решится присмотреться к ним повнимательнее, ждут сюрпризы.[5]

1.1 Лист Мёбиуса

Лента Мебиуса является одной из самых необыкновенных геометрических фигур. Несмотря на ее необычность, ее легко сделать в домашних условиях.

Лента Мебиуса – это трехмерная неориентируемая фигура с одной границей и стороной. Этим она уникальна и отлична от всех других предметов, которые могут встретиться в повседневной жизни. Ленту Мебиуса также называют листом Мебиуса и поверхностью Мебиуса. Она относится к топологическим объектам, то есть объектам непрерывным. Такие объекты изучает топология - наука, исследующая непрерывность среды и пространства.

Интерес вызывает уже само открытие ленты. Два математика, несвязанных между собой, открыли ее в одном и том же 1858 году. Этими открывателями были Август Фердинанд Мебиус и Иоганн Бенедикт Листинг.

Условно различают ленты по способу сворачивания: по часовой стрелке и против часовой стрелки. Их еще называют правая и левая. Но различить «на глаз» вид ленты невозможно.

Сделать такую фигуру чрезвычайно просто: нужно взять ленту ABCD. Свернуть ее так, чтобы соединить точки A и D, В и С, склеить соединенные концы.

Лента Мебиуса имеет характерные свойства, они не меняются, если ленту сжимать, комкать или резать вдоль.

К этим свойствам относятся:

Односторонность. Если взять ленту Мебиуса и начать закрашивать в любом ее месте и направлении, то постепенно вся фигура будет закрашена целиком, при этом фигуру не нужно будет переворачивать.

Непрерывность. Каждую точку этой фигуры можно соединить с другой ее точкой, при этом ни разу не выходя за края ленты.

Двусвязность (или двумерность). Лента остается цельной, если резать ее вдоль. Из нее не получатся в этом случае две разные фигуры.

Отсутствие ориентированности. Если представить, что человек мог бы идти по этой фигуре, то при возвращении в точку начала путешествия, он бы превращался в свое отражение.[8]

Лист Мебиуса – неиссякаемый источник для творчества писателей, художников и скульпторов. Его упоминание часто встречается в фантастической и мистической литературе. На его свойствах основывались художественные вымыслы о возникновении Вселенной, устроенности загробной жизни, передвижении во времени и пространстве. Лист Мебиуса упоминали в своих произведениях Артур Кларк, Владислав Крапивин, Хулио Кортасар, Харуки Мураками и многие другие.

Известным художником Эшером был создан ряд литографий с использованием ленты. На наиболее известной его работе муравьи ползут по листу Мебиуса.

Часто используют эту геометрическую фигуру ювелиры при создании дизайна драгоценностей.

Ленту Мебиуса широко применяют в науке и промышленности. Она является источником для множества научных исследований и гипотез. Существует, например, теория, что ДНК – это часть листа Мебиуса. Исследователи в области генетики уже научились разрезать одноцепочную ДНК так, чтобы получить из нее ленту Мебиуса. Физики говорят о том, что оптические законы базируются на свойствах листа Мебиуса. Например, отражение в зеркале – это своего рода передвижение во времени по аналогичной траектории. Есть научная гипотеза о том, что Вселенная – это гигантская лента Мебиуса.

В начале 20 века Никола Тесла изобрел резистор Мебиуса, который противостоит потоку электроэнергии, не вызывая при этом электромагнитных помех. Он состоит из двух проводящих поверхностей, которые скручены на 180 ° и образуют ленту Мебиуса.

Полоса ленточного конвейера (транспортирующей машины непрерывного действия) сделана в форме ленты Мебиуса. Такая поверхность позволяет увеличить срок использования ленты, так как ее изнашивание будет происходить равномерно. Используют форму ленты Мебиуса и при записи на непрерывную пленку.

Лист Мебиуса применялся в матричных принтерах для продления срока годности красящей ленты.

На основе ленты Мебиуса создано абразивное кольцо в механизмах для заточки, работает автоматическая передача.

В настоящее время многие изобретатели пользуются свойствами данной ленты для проведения экспериментов и создания новых устройств.

Лента Мебиуса продолжает вызывать стойкий интерес, не только у математиков и изобретателей, но и у обычных людей. Она вдохновляет деятелей искусства на создание загадочных произведений и фантастических теорий. Эксперименты с этой интересной фигурой – увлекательное занятие, как для взрослого, так и для ребенка. Ее свойства нашли свое применение в науке, технике и в быту. Лента Мебиуса - это занимательная математическая загадка, скрывающая в себе смысл идеалистического понимания устройства Вселенной, ее воздействие на нашу жизнь можно изучать бесконечно.[6]

1.2Треугольник Рёло

Треуго́льникРёло́ представляет собой область пересечения трёх равных кругов с центрами в вершинах правильного треугольника и радиусами, равными его стороне. Его можно построитьс помощью одного циркуля, не прибегая к линейке. Это построение сводится к последовательному проведению трёх равных окружностей. Центр первой выберется произвольно, центром второй может быть любая точка первой окружности, а центром третьей — любая из двух точек пересечения первых двух окружностей. Треугольник Рёло является плоской геометрической фигурой.

Треугольник Рёло назван по имени Франца Рёло – немецкого учёного-инженера, подробно исследовавшего его. Кроме того, Франц Рело использовал его в своих механизмах. Рёло не является первооткрывателем этой фигуры, хотя он и подробно изучил её. В частности, он рассматривал вопрос о том, сколько контактов необходимо, чтобы предотвратить движение плоской фигуры, и на примере искривлённого треугольника, вписанного в квадрат, показал, что даже трёх контактов может быть недостаточно для того, чтобы фигура не вращалась. Некоторые математики считают, что первым продемонстрировал идею треугольника из равныхдугокружностиЛеонард Эйлер в XVIII веке. Тем не менее, подобная фигура встречается и раньше, в XV веке: её использовал в своих рукописях Леонардо да Винчи. Примерно в 1514 году Леонардо да Винчи создал одну из первых в своём роде карт мира. Поверхность земного шара на ней была разделена экватором и двумя меридианами на восемь сферических треугольников, которые были показаны на плоскости карты треугольниками Рёло. В XIII веке, создатели церкви Богоматери в Брюгге использовали треугольник Рёло в качестве формы для некоторых окон. Следует отметить, что треугольник Рёло, как и любую другую фигуру постоянной ширины, можно вписать в квадрат, а также в правильный шестиугольник.

Треугольник получил распространение в технике — на его основе были созданы кулачковые игрейферные механизмы, роторно-поршневой двигатель Ванкеля и даже дрели, позволяющие сверлить квадратные отверстия. Так, в 1914 году английский инженер Гарри Джеймс Уаттс изобрёл инструмент для сверления квадратных отверстий,с 1916 года сверла находятся в серийном производстве. Сверло Уаттса представляет собой треугольник Рело, в котором заточены кромки и прорезаны углубления для отвода стружки.

В форме треугольника Рёло можно изготавливать крышки для люков — опытным путем доказано, что благодаря постоянной ширине они не могут провалиться в люк. В Сан-Франциско, для системы рекуперированияводыкорпуса люков имеют форму треугольника Рёло. За счет того, что у треугольника Рёло площадь меньше, чем у круга, себестоимость люков в форме треугольников Рёло была бы ниже, чем у традиционно круглых. Перейдя на серийное производство люков в форме треугольника Рёло, на мой взгляд, можно было бы быстрее решить проблему открытых колодцев и избежать травматизма и смертей людей.[4]

1.3 Тессеракт

Тессеракт — четырёхмерный гиперкуб — аналог куба в четырёхмерном пространстве.

Согласно Оксфордскому словарю, слово «tesseract» было придумано и начало использоваться в1888 году Чарльзом ГовардомХинтоном (1853—1907) в его книге «Новая эра мысли». Позже некоторые люди назвали ту же самую фигуру тетракубом— четырёхмерным кубом.

Тессеракт в искусстве

В серии фильмов Кинематографическая вселенная Marvel тессеракт – это ключевой элемент сюжета, космический артефакт в форме гиперкуба.

Сюжет фильма «Мстители» сосредоточен на использовании куба «Тессеракт» как неиссякаемого источника космической энергии, для открытия портала в другое «измерение» с целью осуществления плана по захвату мира.

Телесериал «Андромеда» использует тессеракт-генераторы как устройство заговора. Они прежде всего предназначены для того, чтобы управлять пространством и временем.

Роберт Э. Хайнлайн упоминал гиперкубы в трех научно-фантастических рассказах. В «Доме четырех измерений» он описал дом, построенный как развертка тессеракта, а затем вследствие землетрясения «сложившийся» в четвертом измерении и ставший реальным тессерактом. [5]

Кресты на некоторых христианских храмах и монастырях Египта напоминают развертку тессеракта.

Картина «Распятие на кресте» (Corpus Hypercubus) Сальвадора Дали.[3]

1.4Фрактал

Фракта́л (лат. «fractus» — дроблёный, сломанный, разбитый) — сложная геометрическая фигура, обладающая свойством самоподобия, то есть составленная из нескольких частей, каждая из которых подобна всей фигуре целиком. Следует отметить, что слово «фрактал» не является математическим термином и не имеет общепринятого строгого математического определения. Оно может употребляться, когда рассматриваемая фигура обладает следующим свойством: фигура является самоподобной или приближённо самоподобной.

Первые примеры самоподобных множеств с необычными свойствами появились в XIX веке (например, множество Кантора). Термин «фрактал» был введён Бенуа Мандельбротом в1975 году и получил широкую популярность с выходом в 1977 году его книги «Фрактальная геометрия природы». Природные объекты часто имеют фрактальную форму.[3]

Многие объекты в природе обладают фрактальными свойствами, например, побережья, облака, кроны деревьев, снежинки, кровеносная система и система альвеол человека или животных и т. д. Фракталы, особенно на плоскости, популярны благодаря сочетанию красоты с простотой построения при помощи компьютера. Так, например, в физике фракталы естественным образом возникают при моделировании нелинейных процессов, таких, кактурбулентное течение жидкости, сложные процессы диффузии-адсорбции, пламя, облака и т. п. Фракталы используются при моделировании пористых материалов, например, в нефтехимии. В биологии они применяются для моделирования популяций и для описания систем внутренних органов (система кровеносных сосудов).

Одни из наиболее мощных приложений фракталов лежат в компьютерной графике. Во-первых, это фрактальное сжатие изображений, и во-вторых, построение ландшафтов, деревьев, растений и генерирование фрактальных текстур. Достоинства алгоритмов фрактального сжатия изображений - очень маленький размер упакованного файла и малое время восстановления картинки. Оно основано на идее о том, что вместо самого изображения можно хранить сжимающее отображение. Один из вариантов данного алгоритма был использован фирмой Microsoft при издании своей энциклопедии, но большого распространения эти алгоритмы не получили. Склонность фракталов походить на горы, цветы и деревья эксплуатируется некоторыми графическими редакторами,например фрактальные облака из 3D studio MAX, фрактальные горы в WorldBuilder.

Архитектура, начиная с фрагментов, деталей и заканчивая пространством города в целом – это система, обладающая фрактальными свойствами, которые нельзя не учитывать при формировании городской среды и проектировании новых объектов внутри неё. Город по своей сути – уникальное явление соединения творческих и технических усилий человека, социальных взаимодействий и воздействий природных процессов. Представление города как особой архитектурной системы – естественно сложившейся фрактальной структуры, развивающейся по не всегда понятным на первый взгляд алгоритмам, вполне оправдано. Фрактальными свойствами обладают не только здания, сооружения, кварталы, улицы, районы, но вся городская среда в целом, рассматриваемая как непрерывная структура в пространстве и во времени, развивающаяся функционально во взаимосвязи с изменяющейся пространственной организацией города.

Принципы фракталоподобного формообразования в архитектуре применяются с давних времен, и хотя использование фрактальных правил построения в архитектуре далеко не всегда оказывалось математически выверенным, но в поиске и создании художественно выразительных пропорций архитекторов вели их интуиция и талант, чувство гармонии и высокий профессионализм.[4]

Практическая часть

Путешествие по листу Мёбиуса

Путешествие по листу бесконечности могло бы продолжаться вечно.

Если взять ножницы и немножко поколдовать над этой загадочной поверхностью, то получится создать дополнительные необычные фигуры. Если резать ее вдоль, по линии, удаленной от краев на равное расстояние, то получится закрученная «Афганская лента».[9]

Если полученную ленту разделить вдоль, посередине, то образуются две ленты, взаимопроникающие друг в друга.

Если разрезать ленту Мебиуса с тремя или большим количествам полуоборотов, то получатся кольца, называющиеся парадромными.[8]

Если склеить вместе две ленты Мебиуса вдоль границ, то выйдет другая удивительная фигура – бутылка Кляйна, но ее нельзя сделать в обычном трехмерном пространстве.[9]

Если сгладить некоторые грани листа Мебиуса, то выйдет невозможный

треугольник Пенроуза. Это плоский треугольник-иллюзия, когда смотришь на него, он кажется объемным.[8]

Заключение

Проведя исследование, я сделал такие выводы.

Моя гипотеза подтвердилась: вокруг нас находится большое количество предметов, имеющих форму геометрических фигур. Человек в своей деятельности – при строительстве зданий, сооружений, мостов, машин использует разные геометрические формы.

Природа же подсказывает нам самые правильные варианты их применения, так как наблюдаемые людьми природные творения не просто красивы, но и детально продуманы. Человеку есть откуда черпать свои идеи, главное научиться внимательно наблюдать за природой.

Освещение информации о геометрических фигурах, изучение которых не входит в разделы познаваемые в рамках школьной программы, позволяет приобрести новые знания и иными глазами посмотреть на знакомые предметы.

Список литературы

1.Гарднер М. Математические головоломки и развлечения. — Пер. с англ. Ю.А.Данилова. — М.: Мир, 1971. — 511 с.,

2. Федер Е. Фракталы. — М: «Мир», 1991.

3. Харрис Н. Жизнь и творчество Дали.-Москва.1995

4. https://qwizz.ru/удивительные-фигуры-геометрии/

5. http://interesnik.com/geometriya-v-nashej-zhizni/

6. https://calculator888.ru/blog/raznoe/lenta-mebiusa.html

7.http://www.ntpo.com/fizika/noveyshie-issledovaniya-i-otkrytiya-v-fizike/40044-o-kolce-mebiusa-chast-1.html

8.https://calculator888.ru/blog/raznoe/lenta-mebiusa.html

9.https://ru.wikipedia.org/wiki/

Просмотров работы: 2994